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Abstract

This paper presents a theoretical study of the stability of a two-mass oscillator that moves along a beam on a visco-

elastic half-space. The oscillator and the beam on the half-space are employed to model a bogie of a train and a railway

track, respectively. Using Laplace and Fourier integral transforms, expressions for the dynamic stiffness of the beam are

derived in the point of contact with the oscillator. It is shown that the imaginary part of this stiffness can be negative

thereby corresponding to so-called negative damping. This damping can destabilize the oscillator leading to the

exponential growth of the oscillator’s displacement. The instability zone corresponding to such behavior is found in the

space of the system’s parameters with the help of the D-decomposition method. A parametric study of this zone is

carried out with the emphasis on the effect of the material damping in the half-space and the viscous damping in the

oscillator. It is shown that a proper combination of these damping mechanisms stabilizes the system effectively. An

attempt is made to construct a one-dimensional foundation of the beam so that the instability zone predicted by the

resulting one-dimensional model would coincide with that obtained from the original three-dimensional model. It is

shown that such foundation can be constructed but its parameters are ambiguous and cannot be determined a-priori,

without tuning the instability zone. Therefore, it is concluded that one-dimensional models should not be used for the

stability analysis of high-speed trains.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The operational speed of modern high-speed trains is so high that the dynamic effects become important,

which were of no significance for conventional railways. Among these effects is the dynamic train–rail–soil

interaction. Considering this interaction, researchers employ various models, which differ by complexity of

one or more components of the train–rail–soil system. A comprehensive review of these models is presented

by Popp et al. (1999).

In almost all studies on the issue it is implicitly assumed that there exists the steady-state regime of the

interaction. This means that after a sufficiently long time the system’s vibrations are assumed to become
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independent of the initial conditions and the dynamic behavior to become repetitive or quasi-repetitive,

depending on the applied forces and the railway track’s regularity. This assumption is fully justified if the

train is modeled by a system of a priori prescribed forces and no degrees of freedom of the train are

accounted for, see Filippov (1961), Labra (1975), Krylov (1995), Dieterman and Metrikine (1997),
Grundmann et al. (1999), Sheng et al. (1999), Kaynia et al. (2000), Andersen and Nielsen (2003a),

Vostroukhov and Metrikine (2003). On the contrary, if the train is described as a single- or multi-degree of

freedom system, the motion of the train may be unstable and the steady-state regime may be not reachable.

The instability of a moving object on an elastic structure was first described by Denisov et al. (1985) and

Bogacz et al. (1986). In these papers, it was shown that if the objects speed exceeded the minimum phase

velocity of waves in the elastic structure, the object’s motion might become unstable. Metrikine (1994)

showed that the energy needed for the instability is supplied by the external source, which maintains the

object’s motion along the structure.
During the last decade, several papers were published devoted to the instability. All these papers

(Metrikine and Vesnitsky, 1996; Metrikine and Dieterman, 1997a; Zheng et al., 2000; Metrikine and

Verichev, 2001; Kononov and de Borst, 2002; Zheng and Fan, 2002; Verichev and Metrikine, 2000, 2002,

2003) but one of Metrikine and Popp (1999) dealt with one-dimensional models of the railway track.

Because of the one-dimensional modeling, these studies cannot be used for quantitative prediction of the

train-track stability but they convey an important message that the stability is not guaranteed at high

speeds. Moreover, as shown by Metrikine and Vesnitsky (1996) and Verichev and Metrikine (2003), be-

cause of the track inhomogeneity the train can loose its stability at low speeds because of parametric
resonance. Such instability could arise, for example, in the models, which have been recently studied by

Andersen et al. (2002) and Andersen and Nielsen (2003b).

Since the models of the train-track dynamic interaction become more complicated and tend to account

for the train in a realistic manner, e.g. as for a single- or multi-degree of freedom system (Clouteau et al.,

2001; Grundmann and Lenz, 2003), the stability issue has to be discussed in more detail.

The main aim of this paper is to carry out a parametric study of the stability of a three-dimensional

model of the train–track interaction, which accounts for the dissipation mechanisms both in the ground and

in the train’s suspension system. The emphasis of the study is placed on the effect of the amount of damping
on the train’s stability.

The model under consideration consists of a two-mass oscillator and a beam on a visco-elastic half-

space, which are employed to model a train’s bogie and the rail–soil structure, respectively. The assump-

tions with which the model is studied are described in the next section.

Since the model under consideration is linear, the study is accomplished with the help of Laplace and

Fourier integral transforms, which allow for obtaining the characteristic equation for the vertical motion of

the oscillator. The roots of this equation (the eigenvalues) are analyzed employing the D-decomposition

method (Neimark, 1978). The combinations of parameters, which correspond to at least one eigenvalue
with a positive real part, form the instability domain in the space of the model parameters. The effect of the

system’s parameters on this domain is studied thoroughly, with the emphasis on the effect of the damping

mechanisms.

The paper is concluded with a discussion on capabilities of one-dimensional models to predict the

stability of high-speed trains correctly.
2. The model and the governing equations

The model under consideration is composed of a two-mass oscillator, an infinitely long beam of a finite

width, and a visco-elastic half-space, as depicted in Fig. 1. The oscillator vibrates vertically and moves



Fig. 1. The model and the reference system.
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uniformly along the beam, which is supported by the half-space. The aim of this paper is to study the

stability of small vertical motion of the oscillator as it remains in contact with the beam.

The following assumptions concerning the beam, the half-space and their contact are accepted in this

study (Metrikine et al., 2001):

• The beam has a finite width 2a, is infinitely stiff in the lateral ðyÞ direction, and the Euler–Bernoulli

model describes its vertical motion.
• The visco-elastic half-space is isotropic, homogeneous, and made of a material that satisfies the phenom-

enological Kelvin–Voigt model.

• The contact between the beam and the half-space is modeled approximately so that

� the surface tractions rzz and rxz are uniformly distributed beneath the beam;

� the vertical displacement of the beam is equal to the vertical displacement of the half-space surface

along the line y ¼ 0;

� the lateral surface traction ryz is neglected, since with the above formulated assumptions this traction

does not influence the vertical motion of the beam (Metrikine and Dieterman, 1997b).
� The shear contact in the x-direction between the beam and the half-space is considered as depicted in

Fig. 2, which presents the vertical cross-section of the system by the plane y ¼ 0 (see also Metrikine

et al., 2001). This figure shows that this contact takes place through shear springs with the stiffness

per unit length K, which are uniformly and continuously distributed beneath the beam. The upper ends

of the springs are immovable in the x-direction whereas the lower ends undergo a displacement equal

to the horizontal displacement of the half-space surface along the centerline of the beam.

With these assumptions, equations that govern small vibrations of the system can be written as follows:

• the equations of motion of the half-space in terms of the scalar and vector potentials u and
w ¼ x0w

x þ y0w
y þ z0w

z:
ĉ2L
$
2u ¼ ottu; ĉ2T$

2w ¼ ottw; $ � w ¼ 0; ð1Þ
Fig. 2. The vertical cross-section y ¼ 0 with enlarged interface between the beam and the half-space.
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where ĉ2L ¼ ðk̂ þ 2l̂Þ=q, ĉ2T ¼ l̂=q, q is the mass density, ot is the partial time derivative and

$ ¼ x0ox þ y0oy þ z0oz is the Nabla operator in which ox, oy and oz are the partial derivatives with respect

to x, y and z, respectively. k̂ ¼ k þ k�
ot and l̂ ¼ l þ l�ot are operators that are applied instead of the

Lam�e constants to describe the visco-elastic material of the half-space in accordance with the Kelvin–
Voigt model.

• the balance of stresses at the surface of the half-space z ¼ 0:
rz

sx

sy

wð

w0
zðt; x; y; 0Þ ¼
1

2a
Hða� jyjÞððmbott þ EIoxxxxÞwb þ dðx� VtÞðmdttw01 þ ðk0 þ e0dtÞðw01 � w02ÞÞÞ

zðt; x; y; 0Þ ¼
1

2a
Hða� jyjÞKuðt; x; 0; 0Þ;

zðt; x; y; 0Þ ¼ 0;

ð2Þ
where wbðt; xÞ, w01ðtÞ and w02ðtÞ are the vertical displacements of the beam and the masses of the

oscillator m and M , respectively, uðt; x; y; zÞ is the displacement of the half-space in the x-direction, mb and

EI are the mass per unit length and the bending stiffness of the beam, k0 and e0 are the stiffness and the

viscosity of the oscillator, K is the stiffness of the shear springs, dð. . .Þ and Hð. . .Þ are the Dirac delta
function and the Heaviside step function, dt is the time derivative, ox is the partial derivative over x;

• the continuity of vertical displacements of the beam and the half-space:
t; x; 0; 0Þ ¼ wbðt; xÞ ð3Þ
with wðt; x; y; zÞ the half-space displacement in the z-direction;
• the continuity of vertical displacements of the lower mass of the oscillator and the beam:
1ðtÞ ¼ wbðt; xÞx¼Vt; ð4Þ
• the equation of the vertical motion of the upper mass of the oscillator:
Mdttw02 þ ðk0 þ e0dtÞðw02 � w01Þ ¼ 0: ð5Þ
To analyze the model, we will follow the approach proposed by Metrikine and Popp (1999). In

accordance with this approach, firstly, the equations of motion are transformed into the reference system

that moves along the x-direction with the velocity of the oscillator. Secondly, the Laplace transform over

time and the integral Fourier transform over the new longitudinal coordinate are applied. Then, an

equivalent stiffness vh-s
eq ðx; k1Þ of the half-space is calculated as a complex function of the frequency x and

wavenumber k1 of the bending waves in the beam. Introduction of this stiffness will reduce the original 3D

model to an equivalent 1D model, in which the beam is supported by an equivalent foundation with the

stiffness vh-s
eq ðx; k1Þ as shown in Fig. 3. Note that no additional assumption is needed for this reduction since

vh-s
eq ðx; k1Þ can describe the half-space reaction to any beam motion.

The next step is to reduce the model further by calculating the equivalent stiffness vbeam
eq ðx; V Þ of the

beam in the point of contact with the moving oscillator. This stiffness is the dynamic complex stiffness of the

beam, which depends on the frequency of the oscillator’s vibrations and on the velocity of its motion along

the beam. As shown by Metrikine and Popp (1999) and Metrikine and Verichev (2001), the imaginary part

of this stiffness determines whether the oscillator may be unstable. With the equivalent stiffness of the beam

vbeam
eq ðx; V Þ, the model reduces further to a well-known lumped model depicted in Fig. 4. Thus, to obtain the

characteristic equation for the vertical motion of the oscillator, whose roots determine the system’s
stability, we need to find vbeam

eq ðx; V Þ.



Fig. 3. Equivalent 1D model for the beam-oscillator coupled motion. The reaction of the half-space is accounted for by the foundation

with complex stiffness vh-s
eq ðx; k1Þ.

Fig. 4. Equivalent lumped model for the vertical motion of the oscillator. The reaction of the beam-half-space system is given by the

equivalent spring with complex stiffness vbeam
eq ðx; V Þ.
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Let us accomplish the above-described steps. Firstly, a moving reference system is introduced, which is
defined as
n ¼ x� Vt; y ¼ y; z ¼ z;

s ¼ t:

�
ð6Þ
Transforming the problem statement given by Eqs. (1)–(5) into this reference system gives a system of

equations (A.1)–(A.5), that is presented in Appendix A.

Secondly, the Laplace transform with respect to time and the integral Fourier transforms with respect to

the horizontal co-ordinates n and y are applied to Eqs. (A.1)–(A.5). These transforms are defined as
fs;k1;k2ðs; k1; k2Þ ¼
Z 1

0

Z 1

�1

Z 1

�1
f ðs; n; yÞ expð�st � iðk1n þ k2yÞÞdndy ds: ð7Þ
The resulting system of equations in the Laplace-Fourier domain reads

• equations of motion of the half-space:
~c
�

~c
�

ik1
2
Lðozz � k2

1 � k2
2Þ � ðs� ik1V Þ2

�
us;k1;k2 ¼ 0;

2
T ðozz � k2

1 � k2
2Þ � ðs� ik1V Þ2

�
ws;k1;k2

¼ 0;

ð8Þ

wn
s;k1;k2

þ ik2w
y
s;k1;k2

þ ozw
z
s;k1;k2

¼ 0 ð9Þ
with ~c2L ¼ ðks;k1 þ 2ls;k1Þ=q, ~c2T ¼ ls;k1=q, and ks;k1 ¼ k þ ðs� ik1V Þk� and ls;k1 ¼ l þ ðs� ik1V Þl�,
• the balance of stresses at z ¼ 0 (employing the expressions for stresses given by Eq. (A.7)):



�

l

l

w

w

M
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ks;k1ðozz � k2
1 � k2

2Þus;k1;k2 þ 2ls;k1ðozzus;k1;k2 þ iozðk1wy
s;k1;k2

� k2w
n
s;k1;k2

ÞÞ
�

z¼0

¼ wb
s;k1

Ds;k1

�
þ ms2w01

s þ ðk0 þ se0Þðw01
s � w02

s Þ
� sinðk2aÞ

k2a
;

s;k1 2ik1ozus;k1;k2

�
þ ik2ozw

z
s;k1;k2

� ozzw
y
s;k1;k2

� k2
1w

y
s;k1;k2

þ k1k2w
n
s;k1;k2

�
z¼0

¼ Kus;k1ðs; k1; y; zÞy¼0;z¼0

sinðk2aÞ
k2a

;

s;k1 2ik2ozus;k1;k2

�
þ ozzw

n
s;k1;k2

� ik1ozw
z
s;k1;k2

� k1k2w
y
s;k1;k2

þ k2
2w

n
s;k1;k2

�
z¼0

¼ 0;

ð10Þ
with Ds;k1 ¼ mbðs� ik1V Þ2 þ EI k4
1 ,

• the continuity of vertical displacements of the beam and the half-space:
b
s;k1

ðs; k1Þ ¼ ws;k1ðs; k1; y; zÞy¼0;z¼0 ¼
1

2p

Z 1

�1
ws;k1;k2ðs; k1; k2; zÞz¼0dk2; ð11Þ
since expðik2yÞy¼0 ¼ 1,
• the continuity of vertical displacements of the lower mass of the oscillator and the beam:
01
s ðsÞ ¼ wb

s ðs; nÞn¼0; ð12Þ
• the equation of the vertical motion of the upper mass of the oscillator:
s2w02
s þ ðk0 þ e0sÞðw02

s � w01
s Þ ¼ 0: ð13Þ
The general solution to Eq. (8), requiring that us;k1;k2 and ws;k1;k2
vanish at z ! 1, is
us;k1;k2 ¼ A expð�zRLÞ; wn
s;k1;k2

¼ Bn expð�zRT Þ;

wy
s;k1;k2

¼ By expð�zRT Þ; wz
s;k1;k2

¼ Bz expð�zRT Þ;

RL;T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1 þ k2

2 þ ðs� ik1V Þ2=~c2L;T
q ð14Þ
provided that the branches of the square roots in the complex domain are chosen such that ReðRL;T Þ > 0.

Substituting Eqs. (14) into (9) the boundary conditions Eq. (10) the following system of linear algebraic

equations with respect to unknowns A, Bn, By and Bz is obtained:
ik1Bn þ ik2By � RTBz ¼ 0;

�2ik1RLA þ k1k2Bn þ ð�R2
T � k2

1ÞBy þ ð�ik2RT ÞBz ¼ Hn;

�2ik2RLA þ ðR2
T þ k2

2ÞBn þ ð�k1k2ÞBy þ ðik1RT ÞBz ¼ 0;

2ðk2
1 þ k2

2Þ þ
ðs� ik1V Þ2

~c2T

 !
A þ 2ik2RTBn þ ð�2ik1RT ÞBy ¼ Hz

ð15Þ

with
Hx ¼ Kus;k1ðs; k1; 0; 0Þ sin k2a=ð~ls;k1k2aÞ
Hz ¼ wb

s;k1
Ds;k1 þ ms2u01

s þ ðk0 þ se0Þðw01
s � w02

s Þ
� �

sin k2a=ð~ls;k1k2aÞ:

(
ð16Þ
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Eq. (15) can be readily solved to give
A ¼ DA

D0

; Bn ¼
DBn

D0

; By ¼
DBy

D0

; Bx ¼
DBz

D0

; ð17Þ
with determinants D0, DA, DBn
, DBy , DBz defined in Appendix B.

Now, we need to determine the Laplace–Fourier displacements of the half-space surface in the x- and

z- directions. In accordance with Eq. (A.6), these displacements read (zero in the arguments corresponds

to z ¼ 0)
us;k1;k2ðs; k1; k2; 0Þ ¼ ðik1us;k1;k2 þ ik2w
z
s;k1;k2

� ozw
y
s;k1;k2

Þz¼0 ¼ ik1Aþ ik2Bz þ RTBy ;

ws;k1;k2ðs; k1; k2; 0Þ ¼ ozus;k1;k2

�
þ ik1w

y
s;k1;k2

� ik2w
n
s;k1;k2

�
z¼0

¼ �RLAþ ik1By þ ik2Bn:
ð18Þ
Substitution of Eq. (17) into Eq. (18) gives
us;k1;k2ðs; k1; k2; 0Þ ¼ a11Hn þ a13Hz;

ws;k1;k2ðs; k1; k2; 0Þ ¼ a31Hn þ a33Hz
ð19Þ
with
a11 ¼
1

RTD
2k2

1R
2
T



� ðR2

T þ k2
2Þqþ 4k2

2RLRT

�
; a13 ¼

ik1
D

ðq� 2RLRT Þ;

a31 ¼ �a13; a33 ¼ �ðs� ik1V Þ2

~c2T

RL

D
; D ¼ D0~c2T

ðs� ik1V Þ2RT

:

Application of the inverse Fourier transform with respect to k2 to Eq. (19) followed by substitution of

Eq. (16) yields
us;k1ðs; k1; 0; 0Þ ¼
K

2pls;k1

I11us;k1 þ
I13

2pls;k1

wb
s;k1

Ds;k1

�
þ ms2w01

s þ ðk0 þ se0Þðw01
s � w02

s Þ
�
;

ws;k1ðs; k1; 0; 0Þ ¼
K

2pls;k1

I31us;k1 þ
I33

2pls;k1

ðwb
s;k1

Dls;k1
þ ms2w01

s þ ðk0 þ se0Þðw01
s � w02

s ÞÞ;

Iij ¼
Z þ1

�1
aij

sinðak2Þ
ak2

dk2; i; j ¼ 1; 3:

ð20Þ
Eliminating us;k1 from Eq. (20) and using the continuity condition Eq. (11) the following equation for the

Laplace–Fourier vertical displacement of the beam can be obtained:
wb
s;k1

ðvh-s
eq ðs; k1Þ þ Ds;k1Þ ¼ �w01

s ðms2 þ k0 þ e0sÞ þ w02
s ðk0 þ e0sÞ; ð21Þ
where
vh-s
eq ðs; k1Þ ¼

2pls;k1ð2pls;k1 � KI11Þ
ðKI11 � 2pls;k1ÞI33 � KI213

ð22Þ
is the equivalent dynamic stiffness of the half-space.

Eq. (21), accompanied by the equation of motion of the upper mass of the oscillator, Eq. (13) and the

continuity condition between the lower mass of the oscillator and the beam, Eq. (12) describes vibrations of

the oscillator on the beam supported by an equivalent foundation as depicted in Fig. 3. The stiffness of this

foundation vh-s
eq is a complex-valued function of the Laplace parameter s and the wavenumber k1.

Thus, the first step of the model reduction has been made––the model has been reduced to an equivalent
one-dimensional model. The next step is to obtain an equivalent lumped model depicted in Fig. 4. To carry



1194 A.V. Metrikine et al. / International Journal of Solids and Structures 42 (2005) 1187–1207
out this step, the inverse Fourier-transform over k1 is applied to Eq. (21). With the help of the continuity

condition Eq. (12), the following equation is obtained:
w01ðms2 þ k0 þ e0sþ vbeam
eq ðsÞÞ � w02ðk0 þ e0sÞ ¼ 0; ð23Þ
where
vbeam
eq ðsÞ ¼ 1

2p

Z 1

�1

dk1
vh-s
eq ðs; k1Þ þ Ds;k1

 !�1

: ð24Þ
The expression for vbeam
eq determines the equivalent dynamic stiffness of the beam on the half-space at the

contact point with the moving oscillator.
Eqs. (23) and (13) describe the dynamic system depicted in Fig. 3. Thus, the original 3D model has been

reduced (exactly) to an equivalent lumped model with a complex stiffness element vbeam
eq . Now that this goal

has been reached, the characteristic equation for the vertical vibrations of the oscillator can be obtained

readily. In accordance with Eqs. (23) and (13) this characteristic equation reads
ðms2 þ k0 þ se0 þ vbeam
eq ðsÞÞðMs2 þ k0 þ se0Þ � ðk0 þ se0Þ2 ¼ 0: ð25Þ
The characteristic equation (25) looks exactly the same as that obtained by Metrikine and Verichev (2001)
for an oscillator moving on Timoshenko beam supported by a Kelvin foundation (one dimensional visco-

elastic foundation). However, the dynamic stiffness of the beam vbeam
eq (s) in Eq. (25) and that in the paper of

Metrikine and Verichev (2001) are different functions. The former dynamic stiffness is much more com-

plicated since, in accordance with Eq. (24) it depends on the dynamic stiffness of the half-space vh-s
eq ðs; k1Þ,

whereas the complex stiffness of the Kelvin foundation is given by vKelvin ¼ K0 þ sC0 with constant K0 and

C0. The difference between vh-s
eq ðs; k1Þ and vKelvin is discussed in detail in papers of Dieterman and Metrikine

(1996) and Metrikine and Popp (1999).
3. Equivalent dynamic stiffness of the beam

As shown by Metrikine and Dieterman (1997a), Metrikine and Popp (1999) and Verichev and Metrikine
(2000), the stability of an oscillator, which moves on a beam depends crucially on the dynamic stiffness

vbeam
eq (s) of the beam in the moving contact point. More precisely, it is the imaginary part of the dynamic

stiffness that determines whether the oscillator may be unstable. The instability may arise only in the case

that the imaginary part of vbeam
eq (s) is negative at a frequency band.

Thus, it is worth to start the stability analysis by studying the dynamic stiffness vbeam
eq (s). This stiffness

depends on the Laplace variable s, which is, in general, a complex value. However, as shown by Metrikine

and Dieterman (1997a), if the D-decomposition method (Neimark, 1978; Denisov et al., 1985; Metrikine

and Dieterman, 1997a) is employed for the stability analysis, it is sufficient to consider s ¼ ix, x 2 R, where
x has the sense of the radial frequency of the oscillator’s vertical vibration. Substitution s ¼ ix into Eq. (24)

gives the following expression, which will be studied in this section numerically:
vbeam
eq ðxÞ ¼ 1

2p

Z 1

�1

dk1
Dx;k1 þ vh-s

eq ðx; k1Þ

 !�1

: ð26Þ
Since the denominator of the integrand in Eq. (26) has no real zeros (due to the material damping in the

half-space) and tends to zero at large jk1j proportionally to jk1j�4
, Eq. (26) can be readily integrated

numerically.
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The results of numerical integration are presented in Fig. 5, which shows the real and the imaginary parts

of vbeam
eq as functions of the radial frequency x for five velocities of the oscillator. A low frequency band

x < 40 rad/s is shown in the figure, since for higher frequencies, which correspond to shorter waves, the

assumption that the stresses are uniformly distributed beneath the beam is not valid. The solid and dashed
lines in this figure correspond to the real and imaginary parts of vbeam

eq , respectively. The parameters used in

calculations are shown in Table 1.

Fig. 5a shows that if the oscillator moves slowly as compared to the shear wave speed in the half-space

the real part of the dynamic stiffness slightly decreases with frequency because of growing effect of inertia.
Fig. 5. The dynamic stiffness of the beam on the half-space versus the radial frequency of the oscillator for different velocities of the

oscillator.



Table 1

Basic parameters of the system

Basic parameters

Half-space Beam+interface Oscillator

m ¼ 0:3 l ¼ 2:1
 107 N/m2 q ¼ 1960 kg/m3 EI ¼ 1:3
 108 N/m2 M ¼ 2
 104 kg

l�=l ¼ 10�4 s k�=k ¼ 10�4 s mb ¼ 7500 kg/m m ¼ 2
 103 kg

cR ¼ 95:9 m/s cT ¼ 103:5 m/s cL ¼ 193:6 m/s a ¼ 1:5 m, K ¼ 0 e ¼ 0
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The imaginary part of the stiffness grows almost linearly in correspondence with the Kelvin–Voigt model
for the material damping. This linear growth implies that the radiation damping plays no role in this case.

Fig. 5b corresponds to the oscillator’s velocity, which is still lower than the Rayleigh wave speed in the

half-space but higher than the minimum phase speed of the bending waves in the beam. This means that the

oscillator can excite the bending waves in the beam even in the case that the frequency of its vibration is

equal to zero. Consequently, at the very low frequency band, both the real and imaginary parts of the

dynamic stiffness vary significantly because of excitation of waves in the beam. Despite of this variation,

both parts remain positive, like in the previous case.

Fig. 5c corresponds to the oscillator’s velocity, which is higher than the Rayleigh-wave speed but lower
than the shear wave speed in the half-space. A crucial difference between this figure and the previous ones is

that the imaginary part of the dynamic stiffness is negative in the low-frequency band (a ‘‘negative

damping’’). As shown by Metrikine and Dieterman (1997a), Metrikine and Popp (1999) and Verichev and

Metrikine (2000) this implies that the vertical vibration of the oscillator may become unstable. To enable

the dynamic stiffness to have a negative imaginary part and, consequently, to enable instability, there

should be an external source, which supplies the beam-half-space system with energy. As shown by

Metrikine (1994) this energy is supplied by the external source, which maintains the uniform motion of the

oscillator along the beam. The work of this source is transferred into the energy of the vertical vibrations of
the beam and the oscillator by so-called anomalous Doppler waves, whose properties are described in detail

by Ginzburg (1990).

In Fig. 5d the velocity of the oscillator is slightly greater than the shear wave speed. The figure shows

that the frequency band, corresponding to the negative imaginary part of the dynamic stiffness expands

towards higher frequencies but the absolute value of Imðvbeam
eq Þ decreases at this band.

If the velocity of the oscillator is increased further, Imðvbeam
eq Þ becomes again positive at all frequencies as

depicted in Fig. 5e. The stabilization factor, which removes the low-frequency ‘‘negative damping’’ is the

material damping in the half-space. If the latter were absent, the imaginary part of the dynamic stiffness
would be still negative at this oscillator’s velocity. Note, however, that depending on the material properties

of the half-space, the ratio of the oscillator’s velocity and the shear wave speed, at which the ‘‘negative

damping’’ disappears, can vary significantly. Moreover, for some parameters, Imðvbeam
eq Þ can become

negative again at a higher velocity than that shown in Fig. 5e.

In general, the stabilizing effect of the material damping in the half-space can be found at any velocity of

the oscillator. As shown in Fig. 6a, in which Imðvbeam
eq Þ is plotted for two magnitudes of the material

damping for V ¼ 0:98cT , an increase of the material damping leads to a perceptible shrinkage of the fre-

quency band at which the damping is ‘‘negative’’. In general, there always exists a magnitude of the material
damping, which would ensure the system’s stability for all velocities of the oscillator.

Another factor that influences the dynamic stiffness of the beam is the stiffness of the shear springs at the

beam - half-space interface. As shown in Fig. 6b, once this stiffness is increased, the band with the ‘‘negative

damping’’ expands and the value of Imðvbeam
eq Þ in this band grows. This implies that increasing the shear

stiffness of the interface, the system gets destabilized.

Concluding this section, let us point out its main result: the dynamic stiffness of the beam on the visco-

elastic half-space can have a negative imaginary part (at a low frequency band), which can be interpreted as



Fig. 6. The dynamic stiffness of the beam versus frequency: (a) effect of the material damping and (b) effect of the shear stiffness K.
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a negative damping. The frequency band, in which Imðvbeam
eq Þ < 0, as well as the magnitude of Imðvbeam

eq Þ in

this band, is strongly influenced by the material damping and affected by the stiffness of the shear springs at

the beam––half-space interface. This implies that analyzing the system stability, the effect of these two

factors should be thoroughly investigated.
4. The instability domain

Existence of a frequency band, in which the equivalent stiffness of the beam is negative, is a necessary but

not a sufficient condition of instability (Metrikine and Verichev, 2001). To draw a conclusion on the sys-

tem’s stability, the roots of the characteristic equation Eq. (25) have to be studied. This study will be

accomplished here with the help of the D-decomposition method, developed by Neimark (1978). The D-
decomposition method utilizes the fact that the stability of a linear system is fully determined by the sign of

the real part of its eigenvalues s. The eigenvalues, which correspond to unstable vibrations are located in the

right half-plane of the complex s-plane. Consequently, the imaginary axis of this plane, k ¼ ix, x 2 R is the

boundary that separates the ‘‘stable’’ and ‘‘unstable’’ eigenvalues (roots with ReðsÞ < 0 and ReðsÞ > 0,

respectively). Assume now that the characteristic equation contains a parameter P that can be expressed

explicitly. Such an expression can be then used as a mapping rule to map the imaginary axis of the s-plane
onto the complex plane of the parameter P . The frequency x serves as the parameter of this mapping. The

resulting mapped line(s), which are referred to as D-decomposition line(s), will break the P -plane into
domains with different number of ‘‘unstable’’ eigenvalues. Within a domain, this number may not vary.

Shading the right side of the imaginary axis of the s-plane (the side of ‘‘unstable’’ eigenvalues), and

keeping the shading at the corresponding side of the D-decomposition line(s), the information contained in

the decomposed P -plane can be enriched. With this shading, it becomes known that passing through a D-

decomposition line in the direction of the shading corresponds to the gain of one additional ‘‘unstable’’

eigenvalue by the characteristic equation. Thus, if the number of the ‘‘unstable’’ eigenvalues is known for

just one (arbitrary) value of the parameter P , the D-decomposed P -plane allows to draw a conclusion on

stability of the system for all admissible values of this parameter at once.
Let us firstly carry out the stability analysis for a particular case, assuming that M ¼ K0 ¼ e0 ¼ 0 so that

instead of the two-mass oscillator, a single mass moves on a beam. In this case, it is customary to perform

the D-decomposition of the m-plane. As follows from the characteristic equation (25), the mapping rule in

the case at hand is determined by the following equation (s is replaced by ix):
m ¼
vbeam
eq ðxÞ

x2
: ð27Þ
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The D-decomposition of the m-plane is shown and analyzed in Appendix C. On the basis of this analysis,

using the parameters from Table 1, the instability domain is found, which is shown in Fig. 7. This figure

shows that the instability can occur within a finite interval of the mass’ velocities. The presence of the

velocity (approximately 140 m/s), which bounds the instability domain from the right is caused by the
material damping in the half-space. Consistently, this velocity has not been found in the earlier studies,

which either employed a beam on Kelvin foundation (Metrikine and Dieterman, 1997a,b; Zheng et al.,

2000), a plate on Kelvin foundation (Kononov and de Borst, 2002) or a beam on a purely elastic half-space

(Metrikine and Popp, 1999). Another indirect consequence of the material damping is that to cause

instability the mass should be unrealistically high. Note, however, that this holds only in the case that the

elasticity of the moving oscillator is neglected.

Consider now the stability of the moving oscillator, taking into account its masses, the spring and the

dashpot. In this case, the stiffness k0 of the oscillator will be used as the parameter for D-decomposition.
Substituting s ¼ ix into the characteristic equation (25), the following mapping rule onto the complex k0-
plane is obtained:
k0 ¼ �ie0x þMx2
vbeam
eq ðxÞ � mx2

vbeam
eq ðxÞ �Mx2 � mx2

: ð28Þ
The D-decomposition of the k0-plane is presented in Appendix C. On the basis of this decomposition, the

instability domain is found, which is shown in Fig. 8 for the parameters defined in Table 1.

The figure shows that the oscillator is unstable within a bell-shaped domain (in the stiffness-velocity

plane). The main difference between this instability domain and those found in the earlier studies is that it is
bounded from the right. As mentioned above, the material damping in the half-space causes this effect.

Note that the instability domain in Fig. 8 corresponds to the velocities, which can be easily reached by

modern high-speed trains. Moreover, the magnitudes of the stiffness correspond to realistic values of the

suspension stiffness of high-speed trains. Thus, it is tempting to say that the instability can be considered as

a realistic threat for high-speed trains. Before making such a statement, however, let us perform a para-

metric study of the stability domain. In this study, the parameters defined in Table 1 will be employed with

one of these parameters varied.

Effect of the material damping of the half-space. In Fig. 9(a), the instability domain is depicted for two
magnitudes of the material damping in the half-space. This figure shows that the effect of an increase of the

material damping can be twofold: while diminishing the instability zone towards small magnitudes of

the oscillator’s stiffness, this damping leads to an expansion of the domain towards higher velocities of the
Fig. 7. Instability domain for a moving mass.



Fig. 8. Instability domain for a moving two-mass oscillator.
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oscillator. Note that increasing the material damping further, it is always possible to reach a critical value,

which would ensure the system’s stability at any velocity of the oscillator. Thus, in general, the material

damping stabilizes the system, although it can widen the instability zone with respect to the oscillator’s
velocity.

Effect of the Young’s modulus of the half-space. In Fig. 9(b), the instability domain is presented for three

magnitudes of the Young’s modulus of the half-space. The figure shows that the instability zone shifts

towards higher velocities and expands towards higher stiffness of the oscillator, as the half-space becomes

stiffer. This implies that stiffening the ground, the critical velocity is increased but if this velocity is reached,

the instability can arise in a wider range of parameters.

Effect of the shear springs at the interface. In Fig. 10, the instability domain is presented for two mag-

nitudes of the shear stiffness: K ¼ 0 and K ¼ 1012 Pa. This figure shows that the shear stiffness destabilizes
the system leading to expansion of the instability zone in all directions. This implies that while making

predictions on stability of high-speed trains, this stiffness should be accounted for.

Effect of the upper mass of the oscillator. Fig. 11(a), which presents the instability domain for three

magnitudes of the upper mass, M ¼ 103 kg, M ¼ 2 � 103 kg and M ¼ 3 � 103 kg, shows that this mass

destabilizes the system leading to the zone expansion in all directions. This implies that heavier trains would

experience the instability more likely.
Fig. 9. Effect of parameters of the half-space: (a) material damping and (b) Young’s modulus.



Fig. 10. Effect of the shear stiffness of the interface.

Fig. 11. Effect of parameters of the oscillator: (a) upper mass and (b) viscosity.
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Effect of the viscosity of the oscillator. In Fig. 11(b), the instability domain is depicted for three mag-
nitudes of the oscillator’s viscosity: e0 ¼ 8:6 N s/m, e0 ¼ 18:6 N s/m and e0 ¼ 38:6 N s/m. As follows from

this figure, in contrast to the other parameters, the viscosity changes the instability zone not only quan-

titatively but qualitatively as well. An increase of the viscosity transforms the bell-shaped zone into an

ellipse, which shrinks rapidly and then disappears. Thus, as well as the material damping of the half-space,

the oscillator’s viscosity can make the system unconditionally stable. However, the stabilization effect of the

oscillator’s viscosity is much stronger in the sense that even a relatively small (with respect to the critical)

viscosity of the oscillator can remove the instability zone completely.

Formulating results of this section in practical terms, one can say that the easiest way to ensure the
stability of a high-speed train is to introduce a sufficiently big viscosity in the bogies of the train. The

analysis, carried out in this paper, shows that the viscosity, which would be needed to stabilize a train is

smaller than that, used in the bogies of modern high-speed trains. Thus, the instability should not be ex-

pected in practice unless such factors as the thermo-induced compression of rails, unroundness of the train’s

wheels or curvature of the track would amplify it.
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5. The instability in 3D and 1D models

In the engineering practice, the dynamics of railway tracks is normally modelled with the help of one-

dimensional models. Therefore, it would be of practical relevance to know whether one-dimensional models
can be used to predict the instability quantitatively correctly. In order to explore this, it is assumed that the

beam is supported by a one-dimensional foundation instead of the half-space. This foundation is charac-

terised by a mass mf (kg/m), stiffness kf (N/m2), and two damping factors: cð1Þf (N s/m2) and cð2Þf (N s), all

parameters related to unit length. The mass mf of the foundation is associated with a mass of the half-space,

which vibrates together with the beam and can be referred to as the added mass. The stiffness of the

foundation is introduced in accordance with the Winkler theory. The damping factors cð1Þf and cð2Þf are

employed to describe the energy dissipation in the half-space. The first factor cð1Þf is associated with the

viscous part of this dissipation. Correspondingly, the differential operator cð1Þf ot describes dissipation that
grows linearly with the frequency and is independent of the wavelength of the beam vibrations. The second

factor cð2Þf is associated with the part of dissipation that is of the ‘internal friction’ type. This type of dis-

sipation depends both on the frequency and the wavenumber of the beam vibrations. Because of this, the

effect of the ‘internal friction’ grows much faster with the frequency than that of the viscous damping.

The vertical motion of the beam on the above-described foundation under the moving oscillator is

governed by the following equation:
ððmb þ mfÞott þ EIoxxxx þ cð1Þf ot � cð2Þf otxx þ kfÞwb ¼ �dðx� VtÞðmdttw01 þ ðk0 þ e0dtÞðw01 � w02ÞÞ: ð29Þ
Elaborating Eq. (29), Eqs. (4) and (5) in the same manner as described by Metrikine and Verichev (2001),

the following characteristic equation can be obtained for the vertical vibrations of the oscillator:
ðms2 þ k0 þ se0 þ vbeam
1D ðsÞÞðMs2 þ k0 þ se0Þ � ðk0 þ se0Þ2 ¼ 0 ð30Þ
with
vbeam
1D ðsÞ ¼ 1

2p

Z 1

�1

dk1
ðmb þ mfÞðs� ik1V Þ2 þ EI k4

1 þ ðcð1Þf þ k2
1c

ð1Þ
f Þðs� ik1V Þ þ kf

 !�1

:

The characteristic equation (30) has exactly the same form as Eq. (25) and differs from the latter by the

expression for the dynamic stiffness of the beam only.
Let us compare the instability zone, which is predicted by the 3D and 1D models. To this end, a cor-

respondence should be established between the half-space parameters and those of the one-dimensional

foundation in Eq. (29). Since the most conventional 1D-foundation is the Winkler foundation, which is

characterised by the stiffness kf , it is reasonable to start the identification of the foundation’s parameters

from this stiffness. An exact way to establish the correspondence between the stiffness kf and the parameters

of the half-space is to take the limit s ! 0 in the expression for the dynamic stiffness of the half-space, Eq.

(22). However, even if this limit were calculated, Eq. (22) would still contain integrals over the wavenumber

k1, which would have to be evaluated numerically. This could be done but such an approach would
diminish the main advantage of the 1D model: its simplicity. To keep this advantage, the stiffness kf can be

chosen more or less arbitrarily, not in correspondence with the parameters of the half-space but on the basis

of experience (theoretical and practical), which says that this stiffness is in the order of 108 N/m2.

Now that the magnitude of the stiffness kf has been chosen, the mass per unit length of the foundation

must be calculated in correspondence with the parameters of the half-space. It can be done by requiring that

the minimum phase velocity of bending waves in the beam on the half-space and in the beam on the 1D

foundation are the same. As shown by Dieterman and Metrikine (1996), the minimum phase velocity V min
3D

of the beam on elastic half-space is slightly smaller than the Rayleigh wave speed cR. To avoid unnecessary
complications, the difference cR � V min

3D can be disregarded and V min
3D can be considered equal to cR. For the
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one-dimensional model (without damping), the minimum phase velocity V min
1D can be expressed analytically

to give
V min
1D ¼ ð4EI kfÞ1=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mb þ mf

p : ð31Þ
Imposing the requirement that V min
1D ¼ V min

3D ¼ cR, the following expression for the mass per unit length of

the one-dimensional foundation can be found:
mf ¼ �mb þ 2

ffiffiffiffiffiffiffiffiffiffi
EI kf

p

c2R
� 17295 kg: ð32Þ
Eq. (32) shows that a significant ‘‘added mass’’ is involved in the motion of a beam on the half-space.
The remaining task is to define the damping factors cð1Þf and cð2Þf . Let us first assume that cð2Þf equals zero

and require the ratio cð1Þf =kf be the same as the ratio l�=l ¼ 10�4 s thereby unifying the ratio of the damping

parameter and the elastic parameter in the models. The boundary of the instability zone, which corresponds

to the chosen set of parameters of the 1D model (kf ¼ 108 N/m2, mf ¼ 17295 kg, cð1Þf ¼ 104 N s/m2) is shown

in Fig. 12 by the dashed line. The instability zone is located on the right of this line.

Fig. 12 shows that the 1D model with cð2Þf ¼ 0 predicts reasonably well the left-hand-side boundary of the

instability zone of the 3D model. However, the 1D-boundary (the dashed line) has a positive slope for all

velocities and therefore cannot predict the right-hand-side boundary of the 3D-instability zone. It can be
shown that this behavior of the 1D-boundary cannot be changed by varying the magnitude of the damping

factors cð1Þf and cð2Þf .

It is not difficult to understand why the 1D model does not predict the right-hand-side boundary of the

3D-instability zone. The reason is that this boundary is caused by a substantial increase of the radiation

damping and, as a consequence, of the damping in the material, which accompany the increase of the

oscillator’s velocity. To account for this effect within the 1D model, the damping factors cð1Þf and cð2Þf should

be considered velocity-dependent. Of course, there is an ambiguity in choosing this velocity-dependence,

whose only known property is that it occurs as soon as the velocity of the oscillator V exceeds cR and then
grows with V , see Dieterman and Metrikine (1996). Following the concept of taking ‘‘an easy approach’’,

we choose for the following dependence:
cð1Þf ¼ aðV 2=c2R � 1ÞHðV � cRÞ; cð2Þf ¼ bðV 2=c2R � 1ÞHðV � cRÞ: ð33Þ
Fig. 12. The instability zone for 1D and 3D models.
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Analysis shows that if b ¼ 0 there is no way to chose the parameter a so that the 1D-instability zone would

comply with the 3D-instability zone. On the contrary, keeping a ¼ 0, it is possible to find an appropriate

value for the parameter b to find such compliance. The 1D-instability zone, which corresponds to a ¼ 0,

b ¼ 2:28 � 106 N s is shown in Fig. 12 by the solid line, which is referred to as ‘‘1D improved’’.
Thus, we managed to find parameters of the 1D model so that the 3D-instability zone is predicted with a

reasonable accuracy. However, to accomplish this, a tuning had to be done of the damping factors, which

would be impossible if the 3D-instability zone were not known in advance. On this basis, one may conclude

that 1D-models cannot be used for predicting the stability of a high-speed train.
6. Conclusions

In this paper, the stability of an oscillator that moves uniformly along a beam on a visco-elastic half-

space has been studied. The beam on the half-space has been used as a simplistic three-dimensional model

of a railway track, whereas the oscillator has been employed to model a bogie of a high-speed train.

The main goal of this paper has been to study the effect of the physical parameters of the system on the

stability of the oscillator. The emphasis has been placed on the effect of the material damping of the half-

space and the conditions at the beam-half-space interface. The second main goal has been to clarify whether

one-dimensional models can be used for a quantitatively correct prediction of the stability of a high-speed
train.

It has been shown that there exists a critical velocity of the oscillator that must be exceeded to enable the

instability. As shown by Metrikine and Popp (1999) this velocity is always smaller than the Rayleigh-wave

velocity if the half-space is purely elastic. With introduction of material damping according to the Kelvin–

Voigt model, the critical velocity increases. Further, it has been found that there is a critical magnitude of

the material damping that ensures the unconditional stability of the oscillator.

The main result of this paper is that the viscous damping of the oscillator (the viscosity of the bogie’s

suspension) in combination with the material damping in the half-space (the damping in the ground)
stabilizes the system greatly. It has been shown that considering a realistic value for the material damping,

introduction of a very small, about 200 N s/m, viscous damping of the oscillator stabilizes the system. This

implies that the instability should not be considered as a real threat for high-speed trains, unless such

factors as the thermo-induced compression of rails, unroundness of the train’s wheels or curvature of the

railway track would amplify it.

The second main result of this paper is the conclusion that one-dimensional models of railway tracks

should not be used for quantitative prediction of the stability of high-speed trains. The reason is that there

is no algorithm to determine effective parameters of a one-dimensional model so that the stability prediction
would comply with that of a corresponding three-dimensional model.
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Appendix A

In the moving reference system, introduced by Eq. (6) the governing equations (1)–(5) read
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• the equations of motion of the half-space
~c2L

rz

sn

sy

w

w

M

~$2u ¼ ðos � V onÞ2u; ~c2T ~$
2w ¼ ðos � V onÞ2w; ~$ � w ¼ 0 ðA:1Þ
with ~$ ¼ n0on þ y0oy þ z0oz, w ¼ n0w
n þ y0w

y þ z0w
z,

• the balance of stresses at z ¼ 0
zðs; n; y; 0Þ ¼
1

2a
Hða� jyjÞððmbðos � V onÞ2 þ EI onnnnÞwb

þ dðnÞðmdssw01 þ ðk0 þ e0dsÞðw01 � w02ÞÞÞ;

zðs; n; y; 0Þ ¼
1

2a
Hða� jyjÞKuðs; n; 0; 0Þ;

zðs; n; y; 0Þ ¼ 0;

ðA:2Þ
• the continuity of vertical displacements of the beam and the half-space:
ðs; n; 0; 0Þ ¼ wbðs; nÞ; ðA:3Þ

• the continuity of vertical displacements of the lower mass of the oscillator and the beam:
01ðsÞ ¼ wbðs; 0Þ; ðA:4Þ

• the equation of the vertical motion of the upper mass of the oscillator:
dssw02 þ ðk0 þ e0dsÞðw02 � w01Þ ¼ 0: ðA:5Þ

For further evaluations, the displacements of the half-space and the surface tractions should be expressed in

terms of the potentials u and w. Such expressions can be found in many textbooks, for example in the book

of Achenbach (1973), and can be written as
u ¼ onu þ oyw
z � ozw

y ; v ¼ oyu � onw
z þ ozw

n; w ¼ ozu þ onw
y � oyw

n; ðA:6Þ

rzz ¼ ~kr2u þ 2~lðozzu þ onzw
y � oyzw

nÞ
snz ¼ ~lð2onzu þ oyzw

z � ozzw
y þ onnw

y � onyw
nÞ

syz ¼ ~lð2oyzu þ ozzw
n � onzw

z þ onyw
y � oyyw

nÞ
ðA:7Þ
Appendix B

The determinants in Eq. (17) are given as
D0 ¼ RT
ðs� ik1V Þ2

~c2T
ðq2 � 4ðk2

1 þ k2
2ÞRLRT Þ;

DA ¼ �iRT
ðs� ik1V Þ2

~c2T
ð2k1RTHn þ iqHzÞ;

DBn
¼ �2k2RT k1Hnðq

 
� 2RLRT Þ � iRLHz

ðs� ik1V Þ2

~c2T

!
;

DBy ¼ RT ð4k2
2RLRT

 
þ qð2k2

1 � qÞÞHn � 2ik1RLHz
ðs� ik1V Þ2

~c2T

!
;

DBz ¼ �ik2Hnðq2 � 4ðk2
1 þ k2

2ÞRLRT Þ; with q ¼ k2
1 þ k2

2 þ R2
T :

ðB:1Þ
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Appendix C

The D-decomposition of the m-plane, which is governed by Eq. (27), can have two qualitatively different

patterns. The first pattern corresponds to the case (sub-critical) that the imaginary part of the dynamic
stiffness of the beam is positive at all frequencies, like it is shown in Figs. 5a, b and e. In this case, con-

sidering as an example V ¼ 0:88cT and using the parameters given in Table 1, the m-plane is decomposed as

shown in Fig. 13(a). This figure shows that the D-decomposition curves do not cross the positive part of the

real axis, implying that the stability of the system does not depend on the magnitude of the mass. Taking

into account that no instability may occur as m ! 0, one should conclude that independently of the mass

magnitude, the system is stable at this velocity.

The second pattern corresponds to the case (super-critical) that there exists a frequency band in which

Imðvbeam
eq Þ < 0, like it is shown in Fig. 5c and d. This pattern is shown in Fig. 13(b) for V ¼ 1:1cT . This figure

shows that in the super-critical case the D-decomposition curves cross the positive part of the real axis. The

position of this point is m� � 2:3
 106 kg. Using again the fact that the system must be stable as m ! 0 and

employing the direction of shading, a conclusion can be drawn that the instability occurs in the system if

m > m� (there are two ‘‘unstable roots’’ as indicated in the figure).

To find the boundary of the instability domain in the plane fm; V g, the dependence m�ðV Þ should be

found. This dependence is shown in Fig. 7.

The D-decomposition of the k0-plane is governed by the mapping rule Eq. (28) and can have two

qualitatively different patterns, which are shown in Fig. 14. To plot this figure, the parameters defined in
Table 1 have been used.

Fig. 14 presents the D-decomposition in the sub-critical case V ¼ 0:88cT , whereas Fig. 14(b) shows that

in the super-critical case V ¼ 1:1cT . In order to determine the number of the ‘‘unstable roots’’ in

the domains of the decomposed k0-plane, the following kind of reasoning can be used. Consider that the

stiffness of the oscillator tends to infinity, e.g. Reðk0Þ ! 1, Imðk0Þ ¼ 0. In this case, the masses of the

oscillator vibrate as one mass, which, in accordance with Table 1 has the value of mþM ¼ 22
 103 kg. As

follows from Fig. 7, which shows the instability domain for a moving mass, the vibrations of such a mass

are stable. This implies that the point of the k0-plane defined as Reðk0Þ ! 1, Imðk0Þ ¼ 0 corresponds to the
stable vibrations as well. Employing this fact, it can be readily concluded that the oscillator’s vibrations in

the sub-critical case are stable independently of the oscillator’s stiffness k0, whereas the super-critically

moving oscillator can be unstable if its stiffness is smaller than a critical one. The latter is defined by the

crossing point of the D-decomposition curves with the positive part of the real axis of the k0-plane. Thus, to

find the boundary of the instability domain for the moving oscillator, the position of this point should be
Fig. 13. D-decomposition of the m-plane: (a) sub-critical motion and (b) super-critical motion.



Fig. 14. D-decomposition of the k0-plane: (a) sub-critical motion and (b) super-critical motion.
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defined as a function of the oscillator’s velocity. This function can be found numerically to give the

instability domain, which is shown in Fig. 8.
References

Achenbach, J.D., 1973. Wave propagation in elastic solids. North-Holland Pub. Co., Amsterdam.

Andersen, L., Nielsen, S.R.K., Iwankiewicz, R., 2002. Vehicle moving along an infinite beam with random surface irregularities on a

Kelvin foundation. ASME Journal of Applied Mechanics 69 (1), 69–75.

Andersen, L., Nielsen, S.R.K., 2003a. Boundary element analysis of the steady-state response of an elastic half-space to a moving force

on its surface. Engineering Analysis with Boundary Elements 27 (1), 23–38.

Andersen, L., Nielsen, S.R.K., 2003b. Vibrations of a track caused by variation of the foundation stiffness. Probabilistic Engineering

Mechanics 18 (2), 171–184.

Bogacz, R., Nowakowski, S., Popp, K., 1986. On the stability of a Timoshenko beam on an elastic foundation under a moving spring–

mass system. Acta Mechanica 61, 117–127.

Clouteau, D., Degrande, G., Lombaert, G., 2001. Numerical modelling of traffic induced vibrations. Meccanika 36 (4), 401–420.

Denisov, G.G., Kugusheva, E.K., Novikov, V.V., 1985. On the problem of the stability of one-dimensional unbounded elastic systems.

Journal of Applied Mathematics and Mechanics 49, 533–537.

Dieterman, H.A., Metrikine, A.V., 1996. The equivalent stiffness of a half-space interacting with a beam. Critical velocities of a moving

load along the beam. European Journal of Mechanics A/Solids 15, 67–90.

Dieterman, H.A., Metrikine, A.V., 1997. Steady-state displacements of a beam on an elastic half-space due to a uniformly moving

constant load. European Journal of Mechanics A/Solids 16, 295–306.

Filippov, A.P., 1961. Steady-state vibrations of an infinite beam on an elastic half-space under moving load. Izvestija AN SSSR OTN

Mehanica and Mashinostroenie 6, 97–105 (in Russian).

Ginzburg, V.L., 1990. Applications of Electrodynamics in Theoretical Physics and Astrophysics. Gordon and Breach, New York.

Grundmann, H., Lenz, S., 2003. Nonlinear interaction between a moving SDOF system and a Timoshenko beam/halfspace support.

Archive of Applied Mechanics 72 (11–12), 830–842.

Grundmann, H., Lieb, M., Trommer, E., 1999. The response of a layered half-space to traffic loads moving along its surface. Archive

of Applied Mechanics 69, 55–67.

Kaynia, A.M., Madhus, C., Zackrisson, P., 2000. Ground vibration from high-speed trains: prediction and countermeasure. Journal of

Geotechnical Geoenvironmental Engineering 126 (6), 531–537.

Kononov, A.V., de Borst, R., 2002. Instability analysis of vibrations of a uniformly moving mass in one and two-dimensional elastic

systems. European Journal of Mechanics A/Solids 21, 151–165.

Krylov, V.V., 1995. Generation of ground vibrations by superfast trains. Applied Acoustics 44, 149–164.

Labra, J.J., 1975. An axially stressed railroad track on an elastic continuum subjected to a moving load. Acta Mechanica 22, 113–129.

Metrikine, A.V., 1994. Unstable lateral oscillations of an object moving uniformly along elastic guide as a result of anomalous Doppler

effect. Acoustical Physics 40, 85–89.

Metrikine, A.V., Dieterman, H.A., 1997a. Instability of vibrations of a mass moving uniformly along an axially compressed beam on a

viscoelastic foundation. Journal of Sound and Vibration 201, 567–576.



A.V. Metrikine et al. / International Journal of Solids and Structures 42 (2005) 1187–1207 1207
Metrikine, A.V., Dieterman, H.A., 1997b. Resonance interaction of vertical-longitudinal and lateral waves in a beam on a half-space.

Journal of Applied Mechanics––Transactions of ASME 64, 951–956.

Metrikine, A.V., Popp, K., 1999. Instability of vibrations of an oscillator moving along a beam on an elastic half-space. European

Journal of Mechanics A/Solids 18, 679–701.

Metrikine, A.V., Verichev, S.N., 2001. Instability of vibration of a moving two-mass oscillator on a flexibly supported Timoshenko

beam. Archive of Applied Mechanics 71, 613–624.

Metrikine, A.V., Vesnitsky, A.I., 1996. Instability of vibrations of a mass moving uniformly over periodically and randomly-

inhomogeneous elastic systems. ZAMM 76 (S4), 441–444.

Metrikine, A.V., Vostroukhov, A.V., Vrouwenvelder, A.C.W.M., 2001. Drag experienced by a high-speed train due to excitation of

ground vibrations. International Journal of Solid and Structures 38, 8851–8868.

Neimark, Y.I., 1978. Dynamic Systems and Controllable Processes. Nauka, Moscow (in Russian).

Popp, K., Kruse, H., Kaiser, I., 1999. Vehicle-track dynamics in the mid-frequency range. Vehicle System Dynamics 31, 423–464.

Sheng, X., Jones, C.J.C., Petyt, M., 1999. Ground vibration generated by a load moving along a railway track. Journal of Sound and

Vibration 228 (1), 129–156.

Verichev, S.N., Metrikine, A.V., 2000. Dynamic rigidity of a beam in a moving contact. Journal of Applied Mechanics and Technical

Physics 41, 1111–1117.

Verichev, S.N., Metrikine, A.V., 2002. Instability of a bogie moving on a flexibly supported Timoshenko beam. Journal of Sound and

Vibration 253, 653–668.

Verichev, S.N., Metrikine, A.V., 2003. Instability of vibrations of a mass that moves uniformly along a beam on a periodically

inhomogeneous foundation. Journal of Sound and Vibration 260, 901–925.

Vostroukhov, A.V., Metrikine, A.V., 2003. Periodically supported beam on a visco-elastic layer as a model for dynamic analysis of a

high-speed railway track. International Journal of Solids and Structures 40 (21), 5723–5752.

Zheng, D.Y., Au, F.T.K., Cheung, Y.K., 2000. Vibration of vehicle on compressed rail on viscoelastic foundation. ASCE Journal of

Engineering Mechanics 126, 1141–1147.

Zheng, D.Y., Fan, S.C., 2002. Instability of vibration of a moving-train-and-rail coupling system. Journal of Sound and Vibration 255,

243–259.


	Stability of a two-mass oscillator moving on a beam supported by a visco-elastic half-space
	Introduction
	The model and the governing equations
	Equivalent dynamic stiffness of the beam
	The instability domain
	The instability in 3D and 1D models
	Conclusions
	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	References


