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Abstract

This paper presents a theoretical study of the stability of a two-mass oscillator that moves along a beam on a visco-
elastic half-space. The oscillator and the beam on the half-space are employed to model a bogie of a train and a railway
track, respectively. Using Laplace and Fourier integral transforms, expressions for the dynamic stiffness of the beam are
derived in the point of contact with the oscillator. It is shown that the imaginary part of this stiffness can be negative
thereby corresponding to so-called negative damping. This damping can destabilize the oscillator leading to the
exponential growth of the oscillator’s displacement. The instability zone corresponding to such behavior is found in the
space of the system’s parameters with the help of the D-decomposition method. A parametric study of this zone is
carried out with the emphasis on the effect of the material damping in the half-space and the viscous damping in the
oscillator. It is shown that a proper combination of these damping mechanisms stabilizes the system effectively. An
attempt is made to construct a one-dimensional foundation of the beam so that the instability zone predicted by the
resulting one-dimensional model would coincide with that obtained from the original three-dimensional model. It is
shown that such foundation can be constructed but its parameters are ambiguous and cannot be determined a-priori,
without tuning the instability zone. Therefore, it is concluded that one-dimensional models should not be used for the
stability analysis of high-speed trains.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The operational speed of modern high-speed trains is so high that the dynamic effects become important,
which were of no significance for conventional railways. Among these effects is the dynamic train—rail-soil
interaction. Considering this interaction, researchers employ various models, which differ by complexity of
one or more components of the train-rail-soil system. A comprehensive review of these models is presented
by Popp et al. (1999).

In almost all studies on the issue it is implicitly assumed that there exists the steady-state regime of the
interaction. This means that after a sufficiently long time the system’s vibrations are assumed to become
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independent of the initial conditions and the dynamic behavior to become repetitive or quasi-repetitive,
depending on the applied forces and the railway track’s regularity. This assumption is fully justified if the
train is modeled by a system of a priori prescribed forces and no degrees of freedom of the train are
accounted for, see Filippov (1961), Labra (1975), Krylov (1995), Dieterman and Metrikine (1997),
Grundmann et al. (1999), Sheng et al. (1999), Kaynia et al. (2000), Andersen and Nielsen (2003a),
Vostroukhov and Metrikine (2003). On the contrary, if the train is described as a single- or multi-degree of
freedom system, the motion of the train may be unstable and the steady-state regime may be not reachable.

The instability of a moving object on an elastic structure was first described by Denisov et al. (1985) and
Bogacz et al. (1986). In these papers, it was shown that if the objects speed exceeded the minimum phase
velocity of waves in the elastic structure, the object’s motion might become unstable. Metrikine (1994)
showed that the energy needed for the instability is supplied by the external source, which maintains the
object’s motion along the structure.

During the last decade, several papers were published devoted to the instability. All these papers
(Metrikine and Vesnitsky, 1996; Metrikine and Dieterman, 1997a; Zheng et al., 2000; Metrikine and
Verichev, 2001; Kononov and de Borst, 2002; Zheng and Fan, 2002; Verichev and Metrikine, 2000, 2002,
2003) but one of Metrikine and Popp (1999) dealt with one-dimensional models of the railway track.
Because of the one-dimensional modeling, these studies cannot be used for quantitative prediction of the
train-track stability but they convey an important message that the stability is not guaranteed at high
speeds. Moreover, as shown by Metrikine and Vesnitsky (1996) and Verichev and Metrikine (2003), be-
cause of the track inhomogeneity the train can loose its stability at low speeds because of parametric
resonance. Such instability could arise, for example, in the models, which have been recently studied by
Andersen et al. (2002) and Andersen and Nielsen (2003b).

Since the models of the train-track dynamic interaction become more complicated and tend to account
for the train in a realistic manner, e.g. as for a single- or multi-degree of freedom system (Clouteau et al.,
2001; Grundmann and Lenz, 2003), the stability issue has to be discussed in more detail.

The main aim of this paper is to carry out a parametric study of the stability of a three-dimensional
model of the train—track interaction, which accounts for the dissipation mechanisms both in the ground and
in the train’s suspension system. The emphasis of the study is placed on the effect of the amount of damping
on the train’s stability.

The model under consideration consists of a two-mass oscillator and a beam on a visco-elastic half-
space, which are employed to model a train’s bogie and the rail-soil structure, respectively. The assump-
tions with which the model is studied are described in the next section.

Since the model under consideration is linear, the study is accomplished with the help of Laplace and
Fourier integral transforms, which allow for obtaining the characteristic equation for the vertical motion of
the oscillator. The roots of this equation (the eigenvalues) are analyzed employing the D-decomposition
method (Neimark, 1978). The combinations of parameters, which correspond to at least one eigenvalue
with a positive real part, form the instability domain in the space of the model parameters. The effect of the
system’s parameters on this domain is studied thoroughly, with the emphasis on the effect of the damping
mechanisms.

The paper is concluded with a discussion on capabilities of one-dimensional models to predict the
stability of high-speed trains correctly.

2. The model and the governing equations

The model under consideration is composed of a two-mass oscillator, an infinitely long beam of a finite
width, and a visco-elastic half-space, as depicted in Fig. 1. The oscillator vibrates vertically and moves
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Fig. 1. The model and the reference system.

uniformly along the beam, which is supported by the half-space. The aim of this paper is to study the
stability of small vertical motion of the oscillator as it remains in contact with the beam.

The following assumptions concerning the beam, the half-space and their contact are accepted in this
study (Metrikine et al., 2001):

e The beam has a finite width 2a, is infinitely stiff in the lateral (y) direction, and the Euler—Bernoulli
model describes its vertical motion.

o The visco-elastic half-space is isotropic, homogeneous, and made of a material that satisfies the phenom-
enological Kelvin—Voigt model.

e The contact between the beam and the half-space is modeled approximately so that

(¢]
(¢]

the surface tractions g, and o,, are uniformly distributed beneath the beam;

the vertical displacement of the beam is equal to the vertical displacement of the half-space surface
along the line y = 0;

the lateral surface traction g,, is neglected, since with the above formulated assumptions this traction
does not influence the vertical motion of the beam (Metrikine and Dieterman, 1997b).

The shear contact in the x-direction between the beam and the half-space is considered as depicted in
Fig. 2, which presents the vertical cross-section of the system by the plane y = 0 (see also Metrikine
et al., 2001). This figure shows that this contact takes place through shear springs with the stiffness
per unit length K, which are uniformly and continuously distributed beneath the beam. The upper ends
of the springs are immovable in the x-direction whereas the lower ends undergo a displacement equal
to the horizontal displacement of the half-space surface along the centerline of the beam.

With these assumptions, equations that govern small vibrations of the system can be written as follows:
e the equations of motion of the half-space in terms of the scalar and vector potentials ¢ and

U= xo¥" +yo¥’ + 2oy

Ve =200, GV =0y, Vey=0, (1)

M
k, &
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w

Fig. 2. The vertical cross-section y = 0 with enlarged interface between the beam and the half-space.
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where ¢ = (ft +2p)/p, ¢ =p/p, p is the mass density, 0, is the partial time derivative and
V = x00; + 300, + 200, is the Nabla operator in which 0., 0, and 0, are the partial derivatives with respect
to x, y and z, respectively. 2 = 2+ A"0, and 1 = u + p*0, are operators that are applied instead of the
Lamé constants to describe the visco-elastic material of the half-space in accordance with the Kelvin—
Voigt model.

o the balance of stresses at the surface of the half-space z = 0:

1
o.(t,x,,0) = ZH(G — ) ((my0, + Elaxm)wb +6(x — 1) (mdt,w01 + (ko + eod,) (W' — w")))

1

T (t,x,,0) = 2—H(a — [y))Ku(t,x,0,0), (2)
a

‘c}z(t,x,y, 0) =0,

where wP(#,x), w"(z) and w%(¢) are the vertical displacements of the beam and the masses of the
oscillator m and M, respectively, u(¢,x, y, z) is the displacement of the half-space in the x-direction, my, and
EI are the mass per unit length and the bending stiffness of the beam, &, and ¢, are the stiffness and the
viscosity of the oscillator, K is the stiffness of the shear springs, J(...) and H(...) are the Dirac delta
function and the Heaviside step function, d, is the time derivative, O, is the partial derivative over x;

e the continuity of vertical displacements of the beam and the half-space:

w(t,x,0,0) = wP(t,x) (3)

with w(t, x,y,z) the half-space displacement in the z-direction;
e the continuity of vertical displacements of the lower mass of the oscillator and the beam:

W (1) = wP(t, %),y (4)

o the equation of the vertical motion of the upper mass of the oscillator:

Md,w*” + (ko + eod,)) (W — w°') = 0. (5)

To analyze the model, we will follow the approach proposed by Metrikine and Popp (1999). In
accordance with this approach, firstly, the equations of motion are transformed into the reference system
that moves along the x-direction with the velocity of the oscillator. Secondly, the Laplace transform over
time and the integral Fourier transform over the new longitudinal coordinate are applied. Then, an
equivalent stiffness x?;f(w, ky) of the half-space is calculated as a complex function of the frequency w and
wavenumber k; of the bending waves in the beam. Introduction of this stiffness will reduce the original 3D
model to an equivalent 1D model, in which the beam is supported by an equivalent foundation with the
stiffness X:Ef(wa k1) as shown in Fig. 3. Note that no additional assumption is needed for this reduction since
XZ(‘]S(w, k1) can describe the half-space reaction to any beam motion.

The next step is to reduce the model further by calculating the equivalent stiffness xsgam(w, V) of the
beam in the point of contact with the moving oscillator. This stiffness is the dynamic complex stiffness of the
beam, which depends on the frequency of the oscillator’s vibrations and on the velocity of its motion along
the beam. As shown by Metrikine and Popp (1999) and Metrikine and Verichev (2001), the imaginary part
of this stiffness determines whether the oscillator may be unstable. With the equivalent stiffness of the beam
X?gam(w, V), the model reduces further to a well-known lumped model depicted in Fig. 4. Thus, to obtain the
characteristic equation for the vertical motion of the oscillator, whose roots determine the system’s

stability, we need to find x2*™ (e, V).
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Fig. 3. Equivalent 1D model for the beam-oscillator coupled motion. The reaction of the half-space is accounted for by the foundation
with complex stiffness 3 (w, k).

25 (@.)

Fig. 4. Equivalent lumped model for the vertical motion of the oscillator. The reaction of the beam-half-space system is given by the
equivalent spring with complex stiffness ng“m((u, V).

Let us accomplish the above-described steps. Firstly, a moving reference system is introduced, which is
defined as

éZX—Vl‘, Y=y zZ =z,
{‘c:t (6)

Transforming the problem statement given by Eqgs. (1)—(5) into this reference system gives a system of
equations (A.1)-(A.5), that is presented in Appendix A.

Secondly, the Laplace transform with respect to time and the integral Fourier transforms with respect to
the horizontal co-ordinates & and y are applied to Egs. (A.1)—(A.5). These transforms are defined as

Sk (8,1, k) = /OOO /_OO /_ch(r, & y)exp(—st —i(ki & + kpy))dEdydr. (7)
The resulting system of equations in the Laplace-Fourier domain reads
e equations of motion of the half-space:
(B0=— K = B) = (s = k1)) pusy o = O,
(630~ =) = (s = k1 V)" )Wty = O,

ik, ngpkz + ikzlﬁ{,kl ot az‘ﬁ;/q d = 0 (9)

with & = (Aox, +205,)/Ps €7 = fo, /ps and Aoy = A+ (s — ik V) 2" and p = p+ (s — ik V),
o the balance of stresses at z = 0 (employing the expressions for stresses given by Eq. (A.7)):
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()°s4k1 (0 =kt — K3)Pys py + 204, (0P 4, + 10, (ki g, — kZWE,k, ,kz)))zzo

in(k
= (wik]D.g,kl + ms* W + (ko + sgo) (W' — WOZ)) M

s s kga

Hogy (2ik1 azgoi‘vkl o) + ikzazl’bj-,kl ky azzlpikl ey k%l//:“‘:kl o) + klkzl//f'vkl ‘kl)zzo

sin (kza)

= Ku&kl (S, kl Vs Z)y:(),z:() kza ’

Hs iy (2ik262(p57k1 kT azz‘ﬁik, b iklaz‘pi,kl o T klkZ‘K,kl,kz + k% ‘//f,/q ,kz)

:O,

z=0

with Dy, = my(s — ik V)* + EIk?,
e the continuity of vertical displacements of the beam and the half-space:

1 00
ngl (S, kl) = Ws,kl (Sa kl ' Vs Z)y:()#z:O = % / Ws,kl o (S7 kl ) k27 Z)z:()dk27

since exp(ikay),_o = 1,

e the continuity of vertical displacements of the lower mass of the oscillator and the beam:

01 b
Wy (S) = Wy (S, 5)5:07
e the equation of the vertical motion of the upper mass of the oscillator:

Ms*wW? 4 (ko + eos) (W — ') = 0.

The general solution to Eq. (8), requiring that ¢, ,, and ¥, ,, vanish at z — oo, is
Pyp ky = AXp(—2Ry), Skl #, = B:exp(—zRr),
lpikl do T B.V exp(_ZRT)a lﬁ;kl b = B. eXp(—ZRT),

Rip =B+ B+ (s —ikV)/&,

(10)

(14)

provided that the branches of the square roots in the complex domain are chosen such that Re(R, ;) > 0.
Substituting Egs. (14) into (9) the boundary conditions Eq. (10) the following system of linear algebraic

equations with respect to unknowns 4, B, B, and B. is obtained:

ikB:  + ik,B, —  RyB.

—2ik R, A + kikyB;: + (=R2—k})B, + (—ikaRr)B.
—2ikyR A + (RE+K)B: + (~kik)B, + (ikiR7)B.
— ik V) . :
(2(1«% +k3) + (Sé%) ) A + 2ikRrB: + (—2ikiR7)B,
T

with
Hx = I(lzt&k1 (S, kl, O, O) sin kza/(ﬁs’kl kzd)
H. = (Wg’k]Ds,kl + ms*u® + (ko + seo) (W' — wgz)) sinkaa/ (fig s, kaa).

s

0,
H:,
0,
H:
(15)
(16)
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Eq. (15) can be readily solved to give

Ay Ag, Ag, Ap
Yy =4 B. — ¢ B. — v B. = 2z
A()7 ¢ A() ) y A() ) x AO )
with determinants Ag, Ay, Ag., Ag,, Ap, defined in Appendix B.
Now, we need to determine the Laplace—Fourier displacements of the half-space surface in the x- and
z- directions. In accordance with Eq. (A.6), these displacements read (zero in the arguments corresponds
toz=0)

Us ky ky (S, k] s kz, 0) = (lkl @s‘kl Jo + ikZl//i,lq‘kz — azlpijnkl s )2:0 = lklA + iszZ + RTB},,

(17)

N e . . (18)
Ws ki ke (S, k],kz, 0) = (62(/)&“,@ + 1k1¢§7k11k2 — lkzlpikl«,kz) » = —RLA + lley + lkZBCf-
Substitution of Eq. (17) into Eq. (18) gives
Ug iy 1 (8, k1, k2, 0) = ay Hy + a3 H., (19)
Wa ki ko (85 K1, k2, 0) = az 1 H: + aszH,
with
1 2p2 2 2 2 ik,
ayy = ——, (2k1RT — (RT + kZ)q + 4k2RLRT), apiy = —— ((,] — ZRLRT),
R7A A
— ik V)* R A2
az = —a, a33=—7(s = ) L A=
cr A (s — ik V) Ry

Application of the inverse Fourier transform with respect to k, to Eq. (19) followed by substitution of
Eq. (16) yields

K 1
Uy, (8,51,0,0) = mn Iug g, + —zn; (Wsles,kl + ms* W + (ko + sg0) (W' — wgz)),
s,k s,k
w(kOO—KI LbD 201 k or .02
s (8,K1,0,0) = T 31Uk, +2Tc,u ) (ws,kl i, T STW + (ko + sg0)(wy — w.)), (20)
s,ky K1
> sin(ak,)
1,": ij dk, '7 :173
! [3@ i akz ? e

Eliminating u,;, from Eq. (20) and using the continuity condition Eq. (11) the following equation for the
Laplace—Fourier vertical displacement of the beam can be obtained:

wo o (10 (s, k1) + Dyg,) = —wy' (ms” + ko + €0s) + wy’ (ko + &), (21)
where

2mpyy, (2mpgy, — Kin)

h-s
) k) =
Teq (k) (Kl — 2“/1&/;1)[33 - K[123

(22)

is the equivalent dynamic stiffness of the half-space.

Eq. (21), accompanied by the equation of motion of the upper mass of the oscillator, Eq. (13) and the
continuity condition between the lower mass of the oscillator and the beam, Eq. (12) describes vibrations of
the oscillator on the beam supported by an equivalent foundation as depicted in Fig. 3. The stiffness of this
foundation x?gf is a complex-valued function of the Laplace parameter s and the wavenumber ;.

Thus, the first step of the model reduction has been made—the model has been reduced to an equivalent
one-dimensional model. The next step is to obtain an equivalent lumped model depicted in Fig. 4. To carry
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out this step, the inverse Fourier-transform over k; is applied to Eq. (21). With the help of the continuity
condition Eq. (12), the following equation is obtained:

wol (ms® + ko + eos + X'e’fl“"‘ (5)) — w (ko + €os) = 0, (23)
where
1 [~ dk -
beam 1
S T . — 24
Xeq (S) <2ﬂ: /700 X?&S(S,kl) +Ds,k1> ( )

The expression for x?&am determines the equivalent dynamic stiffness of the beam on the half-space at the
contact point with the moving oscillator.

Eqgs. (23) and (13) describe the dynamic system depicted in Fig. 3. Thus, the original 3D model has been
reduced (exactly) to an equivalent lumped model with a complex stiffness element ;{Egam. Now that this goal
has been reached, the characteristic equation for the vertical vibrations of the oscillator can be obtained

readily. In accordance with Eqs. (23) and (13) this characteristic equation reads
(ms* + ko + seo + X?gam(s))(Msz + ko + sgo) — (ko + s&0)* = 0. (25)

The characteristic equation (25) looks exactly the same as that obtained by Metrikine and Verichev (2001)
for an oscillator moving on Timoshenko beam supported by a Kelvin foundation (one dimensional visco-
elastic foundation). However, the dynamic stiffness of the beam XE;"‘“‘ (s) in Eq. (25) and that in the paper of
Metrikine and Verichev (2001) are different functions. The former dynamic stiffness is much more com-
plicated since, in accordance with Eq. (24) it depends on the dynamic stiffness of the half-space x?{f(s, ki),
whereas the complex stiffness of the Kelvin foundation is given by yg.in = Ko + sCo with constant K, and
Cy. The difference between x?: (s,k1) and g 1s discussed in detail in papers of Dieterman and Metrikine
(1996) and Metrikine and Popp (1999).

3. Equivalent dynamic stiffness of the beam

As shown by Metrikine and Dieterman (1997a), Metrikine and Popp (1999) and Verichev and Metrikine
(2000), the stability of an oscillator, which moves on a beam depends crucially on the dynamic stiffness
X?gam (s) of the beam in the moving contact point. More precisely, it is the imaginary part of the dynamic
stiffness that determines whether the oscillator may be unstable. The instability may arise only in the case
that the imaginary part of ngam (s) is negative at a frequency band.

Thus, it is worth to start the stability analysis by studying the dynamic stiffness ngam (s). This stiffness
depends on the Laplace variable s, which is, in general, a complex value. However, as shown by Metrikine
and Dieterman (1997a), if the D-decomposition method (Neimark, 1978; Denisov et al., 1985; Metrikine
and Dieterman, 1997a) is employed for the stability analysis, it is sufficient to consider s = iw, w € R, where
 has the sense of the radial frequency of the oscillator’s vertical vibration. Substitution s = iw into Eq. (24)
gives the following expression, which will be studied in this section numerically:

-1
4 1 00 dk1
.,beam — —
Teg (@) = ( " [ « Do, +x£‘gf(w,k1)> ' -

Since the denominator of the integrand in Eq. (26) has no real zeros (due to the material damping in the
half-space) and tends to zero at large |k,| proportionally to |k, Eq. (26) can be readily integrated
numerically.
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The results of numerical integration are presented in Fig. 5, which shows the real and the imaginary parts

beam
€q

of y

as functions of the radial frequency w for five velocities of the oscillator. A low frequency band

o < 40 rad/s is shown in the figure, since for higher frequencies, which correspond to shorter waves, the
assumption that the stresses are uniformly distributed beneath the beam is not valid. The solid and dashed

lines in this figure correspond to the real and imaginary parts of y°™

calculations are shown in Table 1.
Fig. 5a shows that if the oscillator moves slowly as compared to the shear wave speed in the half-space
the real part of the dynamic stiffness slightly decreases with frequency because of growing effect of inertia.
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Fig. 5. The dynamic stiffness of the beam on the half-space versus the radial frequency of the oscillator for different velocities of the

oscillator.
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Table 1
Basic parameters of the system

Basic parameters

Half-space Beam+interface Oscillator
v=203 w=2.1x10" N/m? p = 1960 kg/m? EI = 1.3 x 10% N/m? M =2x10* kg
w/u=10"*s A= 10"*s my = 7500 kg/m m=2x 10 kg
cr =959 m/s cr = 103.5 m/s ¢, = 193.6 m/s a=15m K=0 e=0

The imaginary part of the stiffness grows almost linearly in correspondence with the Kelvin—Voigt model
for the material damping. This linear growth implies that the radiation damping plays no role in this case.

Fig. 5b corresponds to the oscillator’s velocity, which is still lower than the Rayleigh wave speed in the
half-space but higher than the minimum phase speed of the bending waves in the beam. This means that the
oscillator can excite the bending waves in the beam even in the case that the frequency of its vibration is
equal to zero. Consequently, at the very low frequency band, both the real and imaginary parts of the
dynamic stiffness vary significantly because of excitation of waves in the beam. Despite of this variation,
both parts remain positive, like in the previous case.

Fig. 5c corresponds to the oscillator’s velocity, which is higher than the Rayleigh-wave speed but lower
than the shear wave speed in the half-space. A crucial difference between this figure and the previous ones is
that the imaginary part of the dynamic stiffness is negative in the low-frequency band (a ‘“‘negative
damping”). As shown by Metrikine and Dieterman (1997a), Metrikine and Popp (1999) and Verichev and
Metrikine (2000) this implies that the vertical vibration of the oscillator may become unstable. To enable
the dynamic stiffness to have a negative imaginary part and, consequently, to enable instability, there
should be an external source, which supplies the beam-half-space system with energy. As shown by
Metrikine (1994) this energy is supplied by the external source, which maintains the uniform motion of the
oscillator along the beam. The work of this source is transferred into the energy of the vertical vibrations of
the beam and the oscillator by so-called anomalous Doppler waves, whose properties are described in detail
by Ginzburg (1990).

In Fig. 5d the velocity of the oscillator is slightly greater than the shear wave speed. The figure shows
that the frequency band, corresponding to the negative imaginary part of the dynamic stiffness expands
towards higher frequencies but the absolute value of Im( ngam) decreases at this band.

If the velocity of the oscillator is increased further, Im( ;{'e’fl’am) becomes again positive at all frequencies as
depicted in Fig. Se. The stabilization factor, which removes the low-frequency ‘“‘negative damping” is the
material damping in the half-space. If the latter were absent, the imaginary part of the dynamic stiffness
would be still negative at this oscillator’s velocity. Note, however, that depending on the material properties
of the half-space, the ratio of the oscillator’s velocity and the shear wave speed, at which the “negative
damping” disappears, can vary significantly. Moreover, for some parameters, Im( ;{Egam) can become
negative again at a higher velocity than that shown in Fig. Se.

In general, the stabilizing effect of the material damping in the half-space can be found at any velocity of
the oscillator. As shown in Fig. 6a, in which Im(xggam) is plotted for two magnitudes of the material
damping for ¥ = 0.98¢7, an increase of the material damping leads to a perceptible shrinkage of the fre-
quency band at which the damping is “‘negative”. In general, there always exists a magnitude of the material
damping, which would ensure the system’s stability for all velocities of the oscillator.

Another factor that influences the dynamic stiffness of the beam is the stiffness of the shear springs at the
beam - half-space interface. As shown in Fig. 6b, once this stiffness is increased, the band with the ““negative
damping” expands and the value of Im(x‘ggam) in this band grows. This implies that increasing the shear
stiffness of the interface, the system gets destabilized.

Concluding this section, let us point out its main result: the dynamic stiffness of the beam on the visco-
elastic half-space can have a negative imaginary part (at a low frequency band), which can be interpreted as
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Fig. 6. The dynamic stiffness of the beam versus frequency: (a) effect of the material damping and (b) effect of the shear stiffness K.

a negative damping. The frequency band, in which Im( ng"‘m) < 0, as well as the magnitude of Im(x};g“m) in
this band, is strongly influenced by the material damping and affected by the stiffness of the shear springs at
the beam—half-space interface. This implies that analyzing the system stability, the effect of these two
factors should be thoroughly investigated.

4. The instability domain

Existence of a frequency band, in which the equivalent stiffness of the beam is negative, is a necessary but
not a sufficient condition of instability (Metrikine and Verichev, 2001). To draw a conclusion on the sys-
tem’s stability, the roots of the characteristic equation Eq. (25) have to be studied. This study will be
accomplished here with the help of the D-decomposition method, developed by Neimark (1978). The D-
decomposition method utilizes the fact that the stability of a linear system is fully determined by the sign of
the real part of its eigenvalues s. The eigenvalues, which correspond to unstable vibrations are located in the
right half-plane of the complex s-plane. Consequently, the imaginary axis of this plane, A = iw, ® € R is the
boundary that separates the “stable” and “unstable” eigenvalues (roots with Re(s) < 0 and Re(s) > 0,
respectively). Assume now that the characteristic equation contains a parameter P that can be expressed
explicitly. Such an expression can be then used as a mapping rule to map the imaginary axis of the s-plane
onto the complex plane of the parameter P. The frequency w serves as the parameter of this mapping. The
resulting mapped line(s), which are referred to as D-decomposition line(s), will break the P-plane into
domains with different number of “unstable” eigenvalues. Within a domain, this number may not vary.

Shading the right side of the imaginary axis of the s-plane (the side of “unstable” eigenvalues), and
keeping the shading at the corresponding side of the D-decomposition line(s), the information contained in
the decomposed P-plane can be enriched. With this shading, it becomes known that passing through a D-
decomposition line in the direction of the shading corresponds to the gain of one additional “unstable”
eigenvalue by the characteristic equation. Thus, if the number of the “unstable’ eigenvalues is known for
just one (arbitrary) value of the parameter P, the D-decomposed P-plane allows to draw a conclusion on
stability of the system for all admissible values of this parameter at once.

Let us firstly carry out the stability analysis for a particular case, assuming that M = Ky = g = 0 so that
instead of the two-mass oscillator, a single mass moves on a beam. In this case, it is customary to perform
the D-decomposition of the m-plane. As follows from the characteristic equation (25), the mapping rule in
the case at hand is determined by the following equation (s is replaced by iw):

2m()
m=——-—:.:

> (27)
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The D-decomposition of the m-plane is shown and analyzed in Appendix C. On the basis of this analysis,
using the parameters from Table 1, the instability domain is found, which is shown in Fig. 7. This figure
shows that the instability can occur within a finite interval of the mass’ velocities. The presence of the
velocity (approximately 140 m/s), which bounds the instability domain from the right is caused by the
material damping in the half-space. Consistently, this velocity has not been found in the earlier studies,
which either employed a beam on Kelvin foundation (Metrikine and Dieterman, 1997a,b; Zheng et al.,
2000), a plate on Kelvin foundation (Kononov and de Borst, 2002) or a beam on a purely elastic half-space
(Metrikine and Popp, 1999). Another indirect consequence of the material damping is that to cause
instability the mass should be unrealistically high. Note, however, that this holds only in the case that the
elasticity of the moving oscillator is neglected.

Consider now the stability of the moving oscillator, taking into account its masses, the spring and the
dashpot. In this case, the stiffness &y of the oscillator will be used as the parameter for D-decomposition.
Substituting s = iw into the characteristic equation (25), the following mapping rule onto the complex k-

plane is obtained:
257 () — mo?

;{ggam(w) — Mw? — mw?’

ky = —igow + Mw? (28)

The D-decomposition of the ky-plane is presented in Appendix C. On the basis of this decomposition, the
instability domain is found, which is shown in Fig. 8 for the parameters defined in Table 1.

The figure shows that the oscillator is unstable within a bell-shaped domain (in the stiffness-velocity
plane). The main difference between this instability domain and those found in the earlier studies is that it is
bounded from the right. As mentioned above, the material damping in the half-space causes this effect.
Note that the instability domain in Fig. 8 corresponds to the velocities, which can be easily reached by
modern high-speed trains. Moreover, the magnitudes of the stiffness correspond to realistic values of the
suspension stiffness of high-speed trains. Thus, it is tempting to say that the instability can be considered as
a realistic threat for high-speed trains. Before making such a statement, however, let us perform a para-
metric study of the stability domain. In this study, the parameters defined in Table 1 will be employed with
one of these parameters varied.

Effect of the material damping of the half-space. In Fig. 9(a), the instability domain is depicted for two
magnitudes of the material damping in the half-space. This figure shows that the effect of an increase of the
material damping can be twofold: while diminishing the instability zone towards small magnitudes of
the oscillator’s stiffness, this damping leads to an expansion of the domain towards higher velocities of the
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Fig. 7. Instability domain for a moving mass.
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Fig. 8. Instability domain for a moving two-mass oscillator.

oscillator. Note that increasing the material damping further, it is always possible to reach a critical value,
which would ensure the system’s stability at any velocity of the oscillator. Thus, in general, the material
damping stabilizes the system, although it can widen the instability zone with respect to the oscillator’s
velocity.

Effect of the Young’s modulus of the half-space. In Fig. 9(b), the instability domain is presented for three
magnitudes of the Young’s modulus of the half-space. The figure shows that the instability zone shifts
towards higher velocities and expands towards higher stiffness of the oscillator, as the half-space becomes
stiffer. This implies that stiffening the ground, the critical velocity is increased but if this velocity is reached,
the instability can arise in a wider range of parameters.

Effect of the shear springs at the interface. In Fig. 10, the instability domain is presented for two mag-
nitudes of the shear stiffness: K = 0 and K = 10'> Pa. This figure shows that the shear stiffness destabilizes
the system leading to expansion of the instability zone in all directions. This implies that while making
predictions on stability of high-speed trains, this stiffness should be accounted for.

Effect of the upper mass of the oscillator. Fig. 11(a), which presents the instability domain for three
magnitudes of the upper mass, M = 10> kg, M =2-10° kg and M = 3-10° kg, shows that this mass
destabilizes the system leading to the zone expansion in all directions. This implies that heavier trains would
experience the instability more likely.
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Fig. 9. Effect of parameters of the half-space: (a) material damping and (b) Young’s modulus.
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Fig. 11. Effect of parameters of the oscillator: (a) upper mass and (b) viscosity.

Effect of the viscosity of the oscillator. In Fig. 11(b), the instability domain is depicted for three mag-
nitudes of the oscillator’s viscosity: ¢y = 8.6 Ns/m, ¢ = 18.6 N's/m and & = 38.6 N s/m. As follows from
this figure, in contrast to the other parameters, the viscosity changes the instability zone not only quan-
titatively but qualitatively as well. An increase of the viscosity transforms the bell-shaped zone into an
ellipse, which shrinks rapidly and then disappears. Thus, as well as the material damping of the half-space,
the oscillator’s viscosity can make the system unconditionally stable. However, the stabilization effect of the
oscillator’s viscosity is much stronger in the sense that even a relatively small (with respect to the critical)
viscosity of the oscillator can remove the instability zone completely.

Formulating results of this section in practical terms, one can say that the easiest way to ensure the
stability of a high-speed train is to introduce a sufficiently big viscosity in the bogies of the train. The
analysis, carried out in this paper, shows that the viscosity, which would be needed to stabilize a train is
smaller than that, used in the bogies of modern high-speed trains. Thus, the instability should not be ex-
pected in practice unless such factors as the thermo-induced compression of rails, unroundness of the train’s
wheels or curvature of the track would amplify it.
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5. The instability in 3D and 1D models

In the engineering practice, the dynamics of railway tracks is normally modelled with the help of one-
dimensional models. Therefore, it would be of practical relevance to know whether one-dimensional models
can be used to predict the instability quantitatively correctly. In order to explore this, it is assumed that the
beam is supported by a one-dimensional foundation instead of the half-space. This foundation is charac-
terised by a mass m; (kg/m), stiffness k; (N/m?), and two damping factors: cﬁl) (N's/m?) and c§2> (N's), all
parameters related to unit length. The mass m; of the foundation is associated with a mass of the half-space,
which vibrates together with the beam and can be referred to as the added mass. The stiffness of the
foundation is introduced in accordance with the Winkler theory. The damping factors c(fl) and 0152) are
employed to describe the energy dissipation in the half-space. The first factor cﬁl) is associated with the
viscous part of this dissipation. Correspondingly, the differential operator c?”@, describes dissipation that
grows linearly with the frequency and is independent of the wavelength of the beam vibrations. The second
factor Cr@ is associated with the part of dissipation that is of the ‘internal friction’ type. This type of dis-
sipation depends both on the frequency and the wavenumber of the beam vibrations. Because of this, the
effect of the ‘internal friction’ grows much faster with the frequency than that of the viscous damping.

The vertical motion of the beam on the above-described foundation under the moving oscillator is
governed by the following equation:

((my + mp)dy + Eld ey + V0, — @0y + k)W = —0(x — V1) (md,w® + (ko + £0d,) (w*" — w®)).  (29)

Elaborating Eq. (29), Egs. (4) and (5) in the same manner as described by Metrikine and Verichev (2001),
the following characteristic equation can be obtained for the vertical vibrations of the oscillator:

(ms* + ko + seq + )(ll’]c;‘m(s))(Ms2 + ko + s&o) — (ko + sgo)z =0 (30)
with

-1
N ?]e:;lm( ) _ i /:x: dk] .
20 J o (my + mg) (s — iky V) + ELK 4+ () + M) (s — iky V) + k¢

The characteristic equation (30) has exactly the same form as Eq. (25) and differs from the latter by the
expression for the dynamic stiffness of the beam only.

Let us compare the instability zone, which is predicted by the 3D and 1D models. To this end, a cor-
respondence should be established between the half-space parameters and those of the one-dimensional
foundation in Eq. (29). Since the most conventional 1D-foundation is the Winkler foundation, which is
characterised by the stiffness 4, it is reasonable to start the identification of the foundation’s parameters
from this stiffness. An exact way to establish the correspondence between the stiffness k; and the parameters
of the half-space is to take the limit s — 0 in the expression for the dynamic stiffness of the half-space, Eq.
(22). However, even if this limit were calculated, Eq. (22) would still contain integrals over the wavenumber
ki, which would have to be evaluated numerically. This could be done but such an approach would
diminish the main advantage of the 1D model: its simplicity. To keep this advantage, the stiffness &; can be
chosen more or less arbitrarily, not in correspondence with the parameters of the half-space but on the basis
of experience (theoretical and practical), which says that this stiffness is in the order of 108 N/m?.

Now that the magnitude of the stiffness 4; has been chosen, the mass per unit length of the foundation
must be calculated in correspondence with the parameters of the half-space. It can be done by requiring that
the minimum phase velocity of bending waves in the beam on the half-space and in the beam on the 1D
foundation are the same. As shown by Dieterman and Metrikine (1996), the minimum phase velocity Viu"
of the beam on elastic half-space is slightly smaller than the Rayleigh wave speed cg. To avoid unnecessary
complications, the difference cg — V3" can be disregarded and V" can be considered equal to cg. For the
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one-dimensional model (without damping), the minimum phase velocity /;i" can be expressed analytically
to give

(Erk) G1)
Vmy + myg

Imposing the requirement that V" = yuin = cp | the following expression for the mass per unit length of
the one-dimensional foundation can be found:

VETK: 17295 kg. (32)
R
Eq. (32) shows that a significant “added mass™ is 1nvolved in the motion of a beam on the hdlf-SpdCC

The remaining task 1s to define the damping factors cf ) and cf Let us first assume that cf equals Zero
and require the ratio cf / k¢ be the same as the ratio u*/u = 10~* s thereby unifying the ratio of the damping
parameter and the elastic parameter in the models. The boundary of the instability zone, which corresponds
to the chosen set of parameters of the 1D model (ky = 108 N/m?, m; = 17295 kg, " = 10* N's/m?) is shown
in Fig. 12 by the dashed line. The instability zone is located on the right of this line.

Fig. 12 shows that the 1D model with 0152) = 0 predicts reasonably well the left-hand-side boundary of the
instability zone of the 3D model. However, the 1D-boundary (the dashed line) has a positive slope for all
velocities and therefore cannot predict the right-hand-side boundary of the 3D-instability zone. It can be
shown that this behavior of the 1D-boundary cannot be changed by varying the magnitude of the damping
factors ct(l) and cf).

It is not difficult to understand why the 1D model does not predict the right-hand-side boundary of the
3D-instability zone. The reason is that this boundary is caused by a substantial increase of the radiation
damping and, as a consequence, of the damping in the material, which accompany the 1ncrease of the
oscillator’s velocity. To account for this effect within the 1D model, the damping factors c§ and cf ) should
be considered velocity-dependent. Of course, there is an ambiguity in choosing this velocity-dependence,
whose only known property is that it occurs as soon as the velocity of the oscillator ¥ exceeds cg and then
grows with V', see Dieterman and Metrikine (1996). Following the concept of taking “an easy approach”,

we choose for the following dependence:

min __
Vip' =

mp = —my + 2

AV =a(V? ) —VDHV —cg), & =pV?/ck —1DH(V —cR). (33)
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Fig. 12. The instability zone for 1D and 3D models.
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Analysis shows that if § = 0 there is no way to chose the parameter « so that the 1D-instability zone would
comply with the 3D-instability zone. On the contrary, keeping o = 0, it is possible to find an appropriate
value for the parameter f§ to find such compliance. The 1D-instability zone, which corresponds to o = 0,
B =2.28-10° Ns is shown in Fig. 12 by the solid line, which is referred to as “I1D improved™.

Thus, we managed to find parameters of the 1D model so that the 3D-instability zone is predicted with a
reasonable accuracy. However, to accomplish this, a tuning had to be done of the damping factors, which
would be impossible if the 3D-instability zone were not known in advance. On this basis, one may conclude
that 1D-models cannot be used for predicting the stability of a high-speed train.

6. Conclusions

In this paper, the stability of an oscillator that moves uniformly along a beam on a visco-elastic half-
space has been studied. The beam on the half-space has been used as a simplistic three-dimensional model
of a railway track, whereas the oscillator has been employed to model a bogie of a high-speed train.

The main goal of this paper has been to study the effect of the physical parameters of the system on the
stability of the oscillator. The emphasis has been placed on the effect of the material damping of the half-
space and the conditions at the beam-half-space interface. The second main goal has been to clarify whether
one-dimensional models can be used for a quantitatively correct prediction of the stability of a high-speed
train.

It has been shown that there exists a critical velocity of the oscillator that must be exceeded to enable the
instability. As shown by Metrikine and Popp (1999) this velocity is always smaller than the Rayleigh-wave
velocity if the half-space is purely elastic. With introduction of material damping according to the Kelvin—
Voigt model, the critical velocity increases. Further, it has been found that there is a critical magnitude of
the material damping that ensures the unconditional stability of the oscillator.

The main result of this paper is that the viscous damping of the oscillator (the viscosity of the bogie’s
suspension) in combination with the material damping in the half-space (the damping in the ground)
stabilizes the system greatly. It has been shown that considering a realistic value for the material damping,
introduction of a very small, about 200 N s/m, viscous damping of the oscillator stabilizes the system. This
implies that the instability should not be considered as a real threat for high-speed trains, unless such
factors as the thermo-induced compression of rails, unroundness of the train’s wheels or curvature of the
railway track would amplify it.

The second main result of this paper is the conclusion that one-dimensional models of railway tracks
should not be used for quantitative prediction of the stability of high-speed trains. The reason is that there
is no algorithm to determine effective parameters of a one-dimensional model so that the stability prediction
would comply with that of a corresponding three-dimensional model.
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Appendix A

In the moving reference system, introduced by Eq. (6) the governing equations (1)—(5) read
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o the equations of motion of the half-space
EVip = (0, — Vo) p,  EVA=(0,—Vd:) Y, Vey=0

with V = £0; + 100, + 200., ¥ = EgW° + ¥ + zo¥/’,
the balance of stresses at z =0

1

0:(7,¢,,0) = o H(a — [y])((my(3: — Vo:)’ + EI 0zeze)w”
+0(¢) (mdnwm + (ko + sodf)(wo1 — woz)))7
1

Tg“z(fa iayv O) = ZH(a - |y|)Ku(T7 57 07 0)7

7.(7,&,,0) =0,

the continuity of vertical displacements of the beam and the half-space:
W(T’ é’ 0’ O) = Wb(‘L" 6)’

the continuity of vertical displacements of the lower mass of the oscillator and the beam:

wl(1) = w’(1,0),
the equation of the vertical motion of the upper mass of the oscillator:

Md. W + (ko + eod,) (W —w"') = 0.

(A.3)

(A4)

(A.5)

For further evaluations, the displacements of the half-space and the surface tractions should be expressed in
terms of the potentials ¢ and . Such expressions can be found in many textbooks, for example in the book
of Achenbach (1973), and can be written as

u=20:¢+ 0,y

- azlpya v= ayq) - ai‘//Z + azl//:a w = aZQD + ailpy - aylpév

02 = V2@ + 2B + 02y — 0.Y°)
Tez = /l(zacon + ayz'ybz - azzlpy + aiilpy - a@’lpé)
T}/Z = ﬂ(za}z(l) + azzl/jé - alepz + aéylpy - awl//‘f)

Appendix B

The determinants in Eq. (17) are given as

Ay =Ry

AA = —iRT

(S — 1k1 V)Z

&

(s —iky V)

(4> — 4(k; + k3)R.Ry),

=) (2k1RTH5 + quZ),
cr

: 2
A/B;~ = —2kRy (leé(q — 2RLRT) _ iRLHZM> ’

&

, ) (s — ik V)
ABJ, = RT (4k2RLRT + q(Zkl — q))Hf — 2ik1RLH27 y

Ap, = —ikyH:(q

&G

> — 4(ki + k3)R.Rr), with ¢ = ki +k; + R3.

(A.6)

(A7)
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Appendix C

The D-decomposition of the m-plane, which is governed by Eq. (27), can have two qualitatively different
patterns. The first pattern corresponds to the case (sub-critical) that the imaginary part of the dynamic
stiffness of the beam is positive at all frequencies, like it is shown in Figs. 5a, b and e. In this case, con-
sidering as an example ¥ = 0.88¢; and using the parameters given in Table 1, the m-plane is decomposed as
shown in Fig. 13(a). This figure shows that the D-decomposition curves do not cross the positive part of the
real axis, implying that the stability of the system does not depend on the magnitude of the mass. Taking
into account that no instability may occur as m — 0, one should conclude that independently of the mass
magnitude, the system is stable at this velocity.

The second pattern corresponds to the case (super-critical) that there exists a frequency band in which
Im(}(ggam) < 0, like it is shown in Fig. 5c and d. This pattern is shown in Fig. 13(b) for V = 1.1¢z. This figure
shows that in the super-critical case the D-decomposition curves cross the positive part of the real axis. The
position of this point is m* =~ 2.3 x 10° kg. Using again the fact that the system must be stable as m — 0 and
employing the direction of shading, a conclusion can be drawn that the instability occurs in the system if
m > m* (there are two ‘“unstable roots” as indicated in the figure).

To find the boundary of the instability domain in the plane {m, V'}, the dependence m*(V') should be
found. This dependence is shown in Fig. 7.

The D-decomposition of the ky-plane is governed by the mapping rule Eq. (28) and can have two
qualitatively different patterns, which are shown in Fig. 14. To plot this figure, the parameters defined in
Table 1 have been used.

Fig. 14 presents the D-decomposition in the sub-critical case V' = 0.88cr, whereas Fig. 14(b) shows that
in the super-critical case V' = l.1cy. In order to determine the number of the ‘“unstable roots” in
the domains of the decomposed ky-plane, the following kind of reasoning can be used. Consider that the
stiffness of the oscillator tends to infinity, e.g. Re(ky) — oo, Im(kg) = 0. In this case, the masses of the
oscillator vibrate as one mass, which, in accordance with Table 1 has the value of m + M = 22 x 10° kg. As
follows from Fig. 7, which shows the instability domain for a moving mass, the vibrations of such a mass
are stable. This implies that the point of the kj-plane defined as Re(ky) — oo, Im(ky) = O corresponds to the
stable vibrations as well. Employing this fact, it can be readily concluded that the oscillator’s vibrations in
the sub-critical case are stable independently of the oscillator’s stiffness &y, whereas the super-critically
moving oscillator can be unstable if its stiffness is smaller than a critical one. The latter is defined by the
crossing point of the D-decomposition curves with the positive part of the real axis of the ko-plane. Thus, to
find the boundary of the instability domain for the moving oscillator, the position of this point should be

45 (a) 4E+005 b)

T T T T T | -4E+005 —1 T T T T T !
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Fig. 13. D-decomposition of the m-plane: (a) sub-critical motion and (b) super-critical motion.
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Fig. 14. D-decomposition of the ky-plane: (a) sub-critical motion and (b) super-critical motion.

defined as a function of the oscillator’s velocity. This function can be found numerically to give the
instability domain, which is shown in Fig. 8.
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